过抛物线y²=4x的焦点F做垂直于x轴的直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:01:57
过抛物线y²=4x的焦点F做垂直于x轴的直线
已知抛物线y^2=4x,过焦点F的弦与抛物线交与A,B两点,过A、B分别做y轴垂线,垂足分别为C、D,则丨AB丨+丨BD

如图,作四边形ACDB的中位线MN,则|AC|+|BD|=2|MN|-p≤2|FH|-p=2p-p=p,从而最小值为p=2.

给定抛物线C:Y平方=4X,F是C的焦点,过点给定抛物线C:Y平方=4X,F是C的焦点,过点F的直线l与C相交于A B

用极坐标解抛物线方程:ρ=2/(1-cosθ)设|AF|=2/(1-cosα),α∈[0,2π)则|BF|=2/(1+cosα)|FB|/|AF|=(1-cosα)/(1+cosα)=-1+2/(1+

过抛物线X^2=4Y的焦点f作直线交抛物线于ab两点,则弦ab的中点M的轨迹方程?

抛物线X^2=4Y的焦点f(1,0)设a(x1,y1)b(x2,y2)弦ab的中点M(x,y)x1^2=4y1,x2^2=4y2k=(y1-y2)/(x1-x2)=(x1+x2)/4=2x/4=x/2

斜率为-1的直线过抛物线y²=-4x的焦点F,且与抛物线交于A,B两点,求线段AB的长

/>抛物线y²=-4x则焦点F(-1,0),准线x=1斜率为-1的直线方程是y=-(x+1)即y=-x-1代入抛物线方程(-x-1)²=4x即x²+2x+1=-4x∴x&

求适合下列条件的抛物线的标准方程 1.过抛物线Y方=2mX(m不等于0)的焦点F作X轴的垂

1)A(m/2,m),B(m/2,-m)|AB|=±2m=6m=±3抛物线的标准方程:y^2=±3x2)点P(-5,2倍根号5)到焦点的距离是6√[(p/2+5)^2+(2√5)^2]=6(p/2+5

设F抛物线y^2=4x的焦点,过点F作直线交抛物线于MN两点,则三角形MON的面积最小值是

分析:高是不变的,为OF=1.使S△MON最小,既使MN最小.当MN垂直于X轴时,MN最小,MN=4.所以三角形MON的面积最小值是=1/2*1*4=2

已知抛物线C:y^2=4x的焦点为F,过F且斜率为1的直线与抛物线C交于A、B两点

答:(1)抛物线y^2=4x的焦点F为(1,0),准线为x=-1,AB直线为:y-0=1*(x-1),即:y=x-1代入抛物线方程整理得:x^2-6x+1=0根据韦达定理:x1+x2=-b/a=6,x

设F是抛物线G:x方=4y的焦点,过点P(0,4)作抛物线G的切点,求切线方程

设F是抛物线G:x^2=4y的焦点,过点P(0,-4)作抛物线G的切线,求切线方程""谢谢"要过程设:抛物线G的切线的切点是:(x0,x0^2/4)G:x^2=4y==>y=x^2/4==>y'=x/

过抛物线y²=4x的焦点F的直线交抛物线于A、B两点,求|AF|·|FB|的取值范围-

[[[注:用"参数法"]]]解由题设,两点A,B均在抛物线y²=4x上,故可设A(a²,2a),B(b²,2b),(a,b∈R,a≠b)显然,焦点F(1,0)[[[1]]

过抛物线y²=4x的焦点F的直线交该抛物线于A B两点,若AF=3,则BF=?

y²=4x,那么焦点F的坐标为(1,0)若直线的斜率不存在,那么直线方程为x=1,此时两个交点为(1,2)和(1,-2),此时|AF|=2,不合题意,故舍去.设直线的斜率为k,那么直线的方程

已知过抛物线y^2=4x的焦点F的直线交抛物线为A、B两点,AF=2,则BF=

F(1,0),准线:x=-1.设A(x1,y1),则AF=x1+1=2,x1=1,∴AF:x=1,∴BF=AF=2.

抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=

解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

已知过抛物线y的平方=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=?

焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2

已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积

面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我

已知抛物线x^2=2y的焦点F 准线l 过l上一点P做抛物线的两条切线 切点分别为AB 求证

如图 21题http://www.gaokao750.cn/Files/adminfiles/wanglei/Resource/%B8%DF%BF%BC%CA%D4%BE%ED%BF%E2/

设过抛物线x^2=4y的焦点F的直线交抛物线于A ,B两点,则线段AB的轨迹方程

焦点F(0,1)A(x1,y1)B(x2,y2)设直线方程y=kx+1代入x^2=4yx^2-4kx-4=0x1+x2=4k中点的横坐标x=2kk=x/2y1+y2=k(x1+x2)+2=2k^2+2

抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点

焦点F(1,0)AB的直线方程为y=x-1x²-6x+1=0x1+x2=6y1+y2=x1+x2-2=4线段AB的垂直平分线所在的直线方程y=-(x-3)+2=-x+52)AB的长度L=|x

过抛物线y^2=4x的焦点F作倾斜角为θ的直线交抛物线于AB两点用θ表示AB的长度

/>y²=4x的焦点F(1,0),准线x=-1设A(x1,y1),B(x2,y2)利用抛物线的定义则|AF|=x1+1,|BF|=x2+1∴|AB|=x1+x2+2直线为y=tanθ(x-1