过抛物线y=4x的焦点做直线交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:07:03
过抛物线y=4x的焦点做直线交
过抛物线y^2=4x的焦点的直线交抛物线于PQ两点,若PQ=8,求弦PQ中点的横坐标

y²=2px=4x,p=2,焦点F(1,0)设PQ斜率为k,方程y=k(x-1),x=y/k+1代入抛物线:y²=4y/k+4,ky²-4y-4k=0y₁+y

已知过抛物线y²=4x焦点F的直线与抛物线交A、B两点,过原点O的直线AO交抛物线准线于C点

(1)焦点是(1,0)所以准线是x=-1点A(x1,y1)所以直线AO:y=(y1/x1)x与直线x=1相交于(-1,-y1/x1)这就是点C然后因为点B(x2,y2)上面的|CB|就是运用两点间的距

过抛物线X^2=4Y的焦点f作直线交抛物线于ab两点,则弦ab的中点M的轨迹方程?

抛物线X^2=4Y的焦点f(1,0)设a(x1,y1)b(x2,y2)弦ab的中点M(x,y)x1^2=4y1,x2^2=4y2k=(y1-y2)/(x1-x2)=(x1+x2)/4=2x/4=x/2

斜率为-1的直线过抛物线y²=-4x的焦点F,且与抛物线交于A,B两点,求线段AB的长

/>抛物线y²=-4x则焦点F(-1,0),准线x=1斜率为-1的直线方程是y=-(x+1)即y=-x-1代入抛物线方程(-x-1)²=4x即x²+2x+1=-4x∴x&

过抛物线y^2=4x的焦点作倾斜角为π/3的直线l与抛物线交A、B两点,求线段AB的长

y²=4x中,p=2,准线为x=-p/2=-1,焦点F(1,0),因为倾斜角为π/3,则斜率为√3,所以直线l的方程为y=√3(x-1)代入y²=4x,得3(x-1)²=

若A为抛物线Y=1/4X^2的顶点,过抛物线焦点的直线交抛物线于B,C两点,则向量AB*AC=?

抛物线方程化为:x²=4y则焦点坐标为(0,1),A点坐标为(0,0)设B(x1,y1),C(x2,y2)设直方程为y=kx+1联立{y=kx+1{x²=4y得x²-4k

过抛物线y²=4x的焦点F的直线交抛物线于A、B两点,求|AF|·|FB|的取值范围-

[[[注:用"参数法"]]]解由题设,两点A,B均在抛物线y²=4x上,故可设A(a²,2a),B(b²,2b),(a,b∈R,a≠b)显然,焦点F(1,0)[[[1]]

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

斜率为1的直线过抛物线Y平方=4X的焦点,且于抛物线交于A,B两点求|AB|的值

焦点坐标是(1,0)AB方程是y=x-1代入得:(x-1)^2=4xx^2-6x+1=0x1+x2=6x1x2=1(x1-x2)^2=(x1+x2)^2-4x1x2=36-4=32(y1-y2)^2=

已知过抛物线y的平方=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=?

焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2

过抛物线y²=4x的焦点作倾斜角为135°的直线,交抛物线于A、B两点,求线段AB的长

线段AB的长=8y²=4x的焦点F是(1,0)准线是x=-1倾斜角为135°的直线斜率是-1∴直线:y=-x+1代入y²=4x得x²-6x+1=0设A(x1,y1),B(

过抛物线y^2=4x的焦点作直线与抛物线交于A、B两点,求线段AB的中点M的轨迹方程

设直线AB:x-1=ky(这样就不用讨论k不存在的情况了,k不存在时就是x轴,没有两个交点)联立直线、抛物线,得x²-(2+4k²)x+1=0或y²-4ky-4=0设M(

设过抛物线x^2=4y的焦点F的直线交抛物线于A ,B两点,则线段AB的轨迹方程

焦点F(0,1)A(x1,y1)B(x2,y2)设直线方程y=kx+1代入x^2=4yx^2-4kx-4=0x1+x2=4k中点的横坐标x=2kk=x/2y1+y2=k(x1+x2)+2=2k^2+2

过抛物线y^2=-4x的焦点,引倾斜角为120°的直线,交抛物线于A、B两点,求△OAB的面积 .

抛物线y^2=-4x的焦点为:F(-1,0)AB方程为:y=-√3(x+1)x=-√3y/3-1代人y^2=-4x得:y^2-4√3y/3-4=0y1+y2=4√3/3,y1y2=-4(y1-y2)^

如图,过抛物线y^2=4x的焦点作两条互相垂直的直线分别交抛物线于点A,B,求|AB|+|CD|的最小值

分析:考虑到过抛物线y²=4x的焦点F引两条互相垂直的直线AB、CD,利用抛物线的极坐标方程解决.先以F为极点,FX为极轴,建立极坐标系,写出抛物线的极坐标方程,利用极径表示出|AB|+|C

过抛物线y^2=4x焦点做直线交抛物线于A(x1,y1)B(x2,y2),若y1+y2=5,求线段AB

焦点(1,0),准线x=-1A到准线距离=x1-(-1)=x1+1B到准线距离=x2+1抛物线上的点到焦点和到准线距离相等所以AB=AF+BF=A到准线距离+B到准线距离=x1+1+x2+1=x1+x

过抛物线y^2=4x焦点的直线交抛物线于AB两点 以AB为直径的圆中 面积的最小值为

证明用极坐标最简单..当然不懂照样看,好懂...设直线倾斜角为d过A、B、F做AD、BC、FE垂直准线,D、C、E为垂足.则FA=AD=EF+FAcosd=2+FAcosd所以FA=2/(1-cosd

过抛物线y^2=4x的焦点且斜率为2的直线l交抛物线于A,B两点求l的方程.求/AB/

2p=4p/2=1所以焦点F(1,0)k=2所以是2x-y-2=0准线是x=-p/2=-1y=2x-2所以y²=4x²-8x+4=4xx²-3x+1=0x1+x2=3抛物

过抛物线y²=4x的焦点做直线l交抛物线A.B两点若线段AB中点的横坐标为3,则AB等于.

题目有问题再问:没有吧,这是我市最好的学校的期末卷子。再答:不好意思,好久不做了,计算错误了。。。。设直线l为:y=k(x-1)y²=4x联立方程得k²-(2k²+4)x