过P(a,-2)作抛物线C:x^2=4y的两条切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:08:47
已知抛物线方程x²=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B;求证:直线AB过定点(0,4).设过P的切线方程为y=k(x-t)-4,代入抛物线方程得x
y=x^2==>p=1/2设:A(x1,x1^2),B(x2,x2^2)根据抛物线的切线公式得:AP的方程是:2x1x-y-x1^2=0----------------------------(1)B
三角形APB的重心G的轨迹方程是:y=1/3(4x^2-x+2)这里打不下,看这个回答就可以
(1)设A、B两点坐标分别是(xa,ya)、(xb,yb),它们与焦点F(0,1)共线,所以(ya-1)/(xa-0)=(yb-1)/(xb-0)=>xa/xb=(ya-1)/(yb-1).(1)过A
设直线AB方程为y-4=k(x-1);联立直线方程与y=2x2得:2x2-kx+k-4=0设A(x1,y1),B(x2,y2)由韦达定理得x1+x2=k2,x1x2=k−42∵y=2x2∴f′(x)=
设A(x1,y1)或A(y1^2/2,y1)B(x2,y2)或B(y2^2/2,y2)y=K(x-1)(1)y^2=2x(2)得x=y^2/2代入(1)整理得ky^2-2y-2k=0韦达定理得y1+y
设A(x1,x1²/4),B(x2,x2²/4)∵y=(1/4)x²∴y'=x/2∴k(PA)=x1/2,k(PB)=x2/2∴(x1/2)(x2/2)=-1∴x1x2=
(1)依题意,点N的坐标为,可设直线AB的方程为,与联立得消去y得由韦达定理得,于是∴当时,。(2)假设满足条件的直线l存在,其方程为,的中点为,l与AC为直径的圆相交于点P,Q,PQ的中点为H,则,
把斜率为k的直线方程表示出来,然后联立这个方程和抛物线方程,消去y,获得一个关于x的一元二次方程,这个方程的一个根是1(因为直线与抛物线的一个交点已经是P,方程的一个根就是这个点P的横坐标)由韦达定理
以PM为底边的等腰三角形PFM所以,FM=FP可以得到P点的纵坐标y=1/4由抛物线的对称性可知,它与x轴交于(0,0)、(2,0)两点、所以a=-1b=2c=0y=-x^2+2x所以y=1/4时x=
http://cache.baidu.com/c?m=9f65cb4a8c8507ed4fece7631043843b4007dd743ca0884e23d7955f93130a1c187b84fa7
A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2
以x=-2、y=1代入,得:(-2)²=2pp=2则:抛物线方程是:x²=4y再问:若直线y=kx-1与抛物线C相切,求K的值再答:将y=kx-1代入抛物线x²=4y中,
我的线性忘记的差不多,不过你去看看http://czsx.cooco.net.cn/testdetail/31528/啦~~里面有
答:设PC=m,由AC=r=│p│,则PA=PB=√(m^2-p^2)S=2*1/2*PA*AC=│p│*√(m^2-p^2)p为常数,要使S达到最小,m应取最小值.设P(2pt^2,2pt)m^2=
1.焦点F为(0,1),p/2=1,p=2故抛物线方程是x^2=4y2,过P(x1,y1)的切线方程是:x1x=2(y+y1)抛物线的准线方程是y=-1联立得:t=-1,s=2(y1-1)/x1=2(
答:选择A抛物线x^2=2py,p>0则抛物线开口向上,焦点F(0,p/2),准线y=-p/2直线为:y-p/2=kx,y=kx+p/2代入抛物线方程有:x^2=2py=2p(kx+p/2)=2pkx
再答:再问:学霸啊!!