pa,pb为圆o的两条切线,ab为切点,c为弧ab上任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:53:47
pa,pb为圆o的两条切线,ab为切点,c为弧ab上任意一点
四点共圆的运用PA,PB 是圆O的两条切线,A,B为切点.D是弧AB上一点,过D点作圆O的切线分别交PA,PB于E,F,

PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在

PA、PB是圆O的两条切线,A、B为切点,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2求半径OA的长?

由切线长定理:PA的平方=PD*PE4*4=2*PE所以:PE=8PE=PD+2R8=2+2R所以:R=3

如图 PA PB是圆O的两条切线 切点为A B ∠APB=60°; 圆O的半径为3 求PA的长

连接AO,∵PA,PB为⊙O切线∴PA=PB,∠OAP=90°∵∠APB=60°∴PA=PB=AB,∠1=∠OAB=∠APB/2=30°AB=2*√[3²-(3/2)²]=3√3

直线pa pb是圆o的两条切线a b 分别为切点且角apb等于120度圆o的半径为4厘米求切线长pa

如图,过圆心O连接op.oa,因为op是角apb的平分线,所以角opa等于60度,所以在直角三角形opa中,由勾股定理求出pa长为三分之四倍根号三. 

直线PA,PB是圆O的两条切线,A,B分别为切点,且角APB=120度,圆O的半径为4cm,求切线长PA.

切与AB说明角OAP和角OBP是直角.连接OP因为AO=OB,OP=OP和前面两个角相等,证明两个三角形全等,说明角OPA=角OPB而两角相加等于120度,所以两个角都是六十度,所以AO是根号三倍的A

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么PA*PB的最小值为?

PA*PB=PA²*COS∠APB①=PA²*(PA²+PB²-AB²)/(2*PA*PB)②=PA²-AB²/2③=OP&sup

如图,过圆O外一点P作圆O的两条切线PA、PB,A、B为切点,BD⊥PA于点D,AE⊥PB于点E,AE、BD交于点H 求

因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形

已知圆O半径是1,PA PB为该圆的两条切线,A,B为两切点,那么向量PA*向量PB的最小值是多少?

设po=x,则AP=BP=根号(x^2-1),sinAPO=1/x.cosAPB=1-2sinAPO^2向量PA*向量PB=(x^2-1)cosAPB,求导求最值即可

如图所示,PA、PB是圆O的两条切线,A、B为切线

因为是切线,所以角OBP=角OAP都=90度四边形内角和为360,所以角AOB+角APB=180度三角形AOB中,边OA=OB,所以角OBA=角OAB=(180度-角AOB)/2=(180度-(180

PA,PB是圆O的两条切线,A,B是切点,CD切劣弧AB于点E,已知切线PA的长为6cm,则△PCD的周长为多少

/>∵PA、PB切圆O于A、B∴PB=PA=6∵CD切圆O于E∴CE=AC,DE=BD∴CD=CE+DE=AC+BD∴△PCD的周长=PC+CD+PD=PC+AC+BD+PD=PA+PB=12(cm)

如图 PA、PB是圆O的两条切线 切点分别为点A 、B,求证PA=PB

证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB

如图所示,PA,PB是圆o的两条切线,切点分别为A,B,若∠P=60°,PA=6cm,求圆O的半径r.

圆O的半径r为2√3cm连接OPPA⊥OA,PB⊥OB∠PAO=∠PBO=90°OA=OBRt△PAO≌Rt△PBO∠APO=∠BPO=1/2∠P=30°tan30°=OA/PA=QA/6=√3/3r

已知圆o的半径为1pa,pb为圆的两条切线,a,b为切点(1)设∠apo=θ,用θ表示PA·PB(2)求PA·PB的范围

向量PA·PB数量积cot²θ*cos2θ=cot²θ-2cos²θθ的定义域为(0,90°),sinθ为单调增,cosθ为单调减设x=sinθ,x∈(0,1),cos&

已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?谢

已经答过,现在复制如下:设PA与PO的夹角为a,则|PA|=|PB|=1/tan(a)y=PA.PB=|PA|*|PB|*cos(2a)=1/[(tana)^2]*cos(2a)=(cosa)^2/[

已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?

解题就是跟题目对话,跟命题人对话.这道题的命题意图主要考察向量的数量积运算与圆的切线长定理,着重考察最值的求法——判别式法,同时也考察学生综合运用数学知识解题的能力及运算能力.【解析】图中第一步需要解

已知圆O的半径为1,PA,PB为圆的两条切线,A,B为两切点,那么→PA* →PB最小值为?

向量PA*向量PB=PA*PB*cos∠APB=PA^2*(PA^2+PB^2-AB^2)/(2PA*PB).余弦定理=PA^2-AB^2/2=OP^2+1-4(1^2-d^2)/2=OP^2+2d^