pa pb是圆o的切线,cd切圆o于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:18:58
pa pb是圆o的切线,cd切圆o于点e
AB是圆O的直径,AP是圆O的切线,A是切点 BP与圆O交于点C D为AP的中点 求直线CD是圆O的切线 (即证明∠OC

证明:连接AC、OC.∵AB是直径,点C在⊙O上.∴∠ACB=90°AC⊥PB在Rt⊿ACP中.点D是PA的中点.∴AD=PD=CD则:∠PCD=∠P,∠ACD=∠DAC.∵OA=OC∴∠OAC=∠O

如图,AB是圆O的直径,AP切圆O于点A,BP与圆O交于点C.证明:CD是圆O的切线.

D是AP的中点?连AC,由AB是直径,∴∠BCA=90°,∠ACP=180°-90°=90°∵D是AP中点,∴CD=AD=PD,AO=CO,DO是公共边,∴△OAD≌△OCD(SSS)∴∠OCD=∠O

如图,BE是圆O的直径,BC切圆O于B ,弦ED//OC,连接CD并延长交BE延长线于A《1》CD是圆O切线,2若AD是

连OD,OD=OE,所以角BED=角ODE,因DE平行于OC,所以角BOC=角BED,角ODE=角COD所以角BOC=角COD,又OD=OB,公共边OC,所以三角形OBC全等于OCD,剩下的对应角相等

已知PAPB,切圆O于A,B两点连AB,且PA.PB的长是方程x方-2mx+3=0的 两根,AB=m,求圆

PA等于PB所以该方程有两个等根也就是4m²=12所以m=√3PA=PB=AB=√3所以∠OAB=30°所以OA=1阴影等于2倍(△PAO-扇形)△PAO面积√3*0.5扇形面积为π/6所以

如图,ab是圆o的直径,点e在圆o外,ae交圆o于c,cd是圆o的切线,交be于d,且de=db,求证be是切线.

连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD

PAPB是圆O切线,AB是切点,连接OAOBOP,过O做OC,ODjiao APBP圆CD两点,连接CD,设△PCD周长

CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切

如图,已知圆O中,AB是直径,过B点作圆O的切线,在切线上任取一点C,连接CO,若AD//OC,求证CD是圆O的切线

证明:∵AD//OC∴∠COB=∠DAO【同位角相等】∠COD=∠ODA【内错角相等】∵OA=OD∴∠DAO=∠ODA∴∠COB=∠COD又∵OB=OD,OC=OC∴⊿COB≌⊿COD(SAS)∴∠C

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

如图,已知ab是圆o的直径,ca是圆o的切线,bd‖co,求证:cd是圆o的切线

证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

已知如图AB CD是圆o的两条平行切线,A C是切点,圆o的另一条切线BD与AB CD分别相交于B D两点.求证BO⊥O

令BD与圆的切点为E连接OE∵OE=OA=r,BA=BE,OB=OB∴△BOA全等△BOE∴∠BOA=∠BOE,即∠BOE=1/2∠AOE同理,∠DOC=∠DOE,即∠DOE=1/2∠COE∴∠BOD

已知AB是圆o的直径,AP是圆o的切线,A是切点,BP与圆o交于点C,若D为AP的中点,求证:直线CD是圆o的切线.

联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等

如图,AB是圆O的直径,AE交圆O于点C,CD切圆O于点C,交BE于点D,且D是BE的中点,BE是圆O的切线吗?为什么?

BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O

两道不等式的题已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为()已知0第二小题打

已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2

AB为圆O的直径,BE切圆O于点B,连接AE交圆O于点C,D是BE的中点.求证CD是圆O的切线

连接CO,CB∵AB为直径∴△ACB为直角△∵BE切圆O于点B∴∠ACB=∠ABE=90°∴∠CAB+∠CBA=∠CBA+∠CBE=90°∴∠CAB=∠CBE∵∠BCE=90°,D是BE的中点∴DC=