p=2(1-sinx)所围图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:15:29
p=2(1-sinx)所围图形的面积
求曲线y=sinx,y=cosx和直线x=0,x=派/2所围成的平面图形的面积

y=sinx,y=cosx交点是(π/4,√2/2)得到S=∫(cosx-sinx)dx(0到π/4)+∫(sinx-cosx)dx(π/4到π/2)=√2-1+√2-1=2√2-2再问:再问:第10

由两曲线Y=SINX(X∈[0,2π])和Y=COSX(X∈[0,2π])所围成的封闭图形的面积

我想你是对的.画图可知,封闭图形的面积为积分区间[Pai/4,5Pai/4]sinx-cosx的一个原函数为-cosx-sinx所以S=(-cos5pai/4-sin5pai/4)+(cospai/4

求抛物线y^2=2px及其在点【p/2 p]处的法线方程所围成图形的面积p>0

解先求法线方程y^2=2pxy'=p/y所以k=1所以法线斜率为-1所以法线方程为y=-x+3/2p求两曲线的交点y^2=2pxy=-x+3p/2交点为[p/2p][9p/2-3p]所以图形的面积为A

求曲线y=sinx和它在x=p/2处的切线及直线x=p所围成图形的面积,并求此图形绕x轴旋转所得旋转体的体积.

p是π吗?它是长为π,高为1的矩形去掉[0,π]区间内的正弦曲线所围面积,S=1*π-∫[0,π]sinxdx=π-(-cosx)[0,π]=π+(cosπ-cos0)=π+(-1-1)=π-2.V=

曲线y=sinx和x轴在区间[0,派/2]上所围成的平面图形的面积

在[0,π/2]上对y=sinx即使其与x轴围成的面积.面积A=【0→π/2】∫sinxdx=(-cosx)|【0→π/2】=-cos(π/2)+cos0=0+1=1

曲线y=sinx,直线y=x,x=π/2所围成图形的面积为

x=0,y=0x=π/2,y=1因此面积可化为定积分∫[0,π/2](x-sinx)dx=(x^2/2+cosx)[0,π/2]=π^2/4-1

求由曲线y=cosx y=sinx 和直线 x=0 x=2所围图形的面积

如图,第一个图是你要求的面积,把它可以转化成第二个图,两个面积是相同的,这样好求一点.这样,则面积是两块对称的图形,不妨算一下左边的面积,S=∫(sinx-cosx)dx (π/4≤x≤5π

求解一道高数题求下列曲线所围成的图形公共部分的面积(1)r=3cosx及r=1+cosx;(2) r=√2sinx及r^

(1)即为圆与心形线公共部分面积图象关于极轴对称令3cosx=1+cosxcosx=1/2x=pi/3则S=2[∫(0,pi/3)(1+cosx)^2/2dx+∫(pi/3,pi/2)9(cosx)^

1.求过由曲线y=sinX,y=cosX及直线x=0,x=π/2所围成的图形的面积

1.在区间[0,π/2]上,函数sinx与cosx交于(π/4,根号2/2),而在[0,π/4)上cosx>sinx;在[π/4,π/2]上,sinx>cosx,所以所求面积为S=∫(0->π/2)|

a(-2,0)b(1,0)动点p 满足pa=2pb,p的轨迹所围图形面积是

设:p点的坐标是(x,y)则根据两点距离公式和pa=2pb,得根号((x+2)^2)+y^2=2根号((x-1)^2+y^2)两边去根号得x^2+4x+4+y^2=2x^2-4x+2+y^2x^2-8

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

曲线y=sinx y=cosx x=0 x=π 所围成平面图形面积

分成两部分积分0-45度,cosx-sinx,45-180度,sinx-cosx再问:能给个结果吗,谢谢再答:没有仔细做,我这里给的是积分的原理

函数y=sinx于2x-πy=0所围成的图形的面积最接近

答案为C.解:曲线y=sinx与直线2x-πy=0都相对原点对称,交于两点(-π/2,-1)及(π/2,1)两线在第一象限围成的面积是:∫(0到π/2)(sinx-2x/π)/dx=(-cosπ)|(

曲线y=sinx及直线x=-π/2,x=π/2与轴所围成平面图形的面积

如图所示:与x轴所围成平面图形的面积=π