P(x,y)是圆(x 3)2 (y-4)2=9上的任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:53:37
P(x,y)是圆(x 3)2 (y-4)2=9上的任意一点
已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是___.

因为f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,所以切线斜率k=4.函数f(x)的导数f'(x)=3x2+1,由f'(x)=3x2+1=4,得x2=1,解得x=1或x=-1,所以f(1

已知P(x,y)是圆C:x^2+y^2-2y=0上的动点

x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1

与直线y=4x-1平行的曲线y=x3+x-2的切线方程是(  )

曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:

已知点P(x,y)是圆x^2+y^2-6x-4y+12=0上的动点,求x+y的最值

x^2+y^2-6x-4y+12=0(x-3)^2+(y-2)^2=1令x-3=cosa,y-2=sinax+y=5+cosa+sina=5+√2sin(a+π/4)x+y最大值5+√2,最小值5-√

点P在曲线y=x3-x+2上移动,设点P处切线的倾斜角为α,则角α的取值范围是(  )

∵点P在曲线y=x3-x+2上移动,设点P处切线的倾斜角为α,∴y′=3x2-1≥-1,∴k=tanα≥-1,根据正切函数的图象:∵倾斜角为α∈[0,π)∴3π4≤α<π或0≤α<π2,故选D.

若点P 在曲线y=x3-x+7上移动,则过点P的切线的倾斜角取值范围是______.

函数y=x3-x+7,所以,y′=3x2-1≥-1,点P在曲线y=x3-x+7上移动,则过点P的切线的斜率的范围:k≥-1.过点P的切线的倾斜角为α,tanα≥-1.过点P的切线的倾斜角取值范围:[0

已知P(x,y)是圆C:x^2+y^2-6x-4y+12=0,上的点,求x-y的最大值与最小值

-t是截距的意思,当相切时就是极限点,-t分别可取到最大值和最小值,那么x-y的最值也就知道了再问:极限点是什么意思,,,,点C(3,2)到直线x-y-t=0的距离是什么意思再答:就是取最值的时候,就

设P(x,y)是圆x²+y²+8y+12=0上的一点,√(x²+y²-2x-2y

√(x²+y²-2x-2y+2)化为√(x-1)²+(y-1)²就是求圆x²+y²+8y+12=0到(1,1)距离最小和最大.x²

(2011•南宁模拟)如图,函数g(x)=xf(x)+x3-1的图象在点P处的切线方程是y=−12x−2

求导得:g′(x)=f(x)+xf′(x)+3x2,把x=-2代入得:g′(-2)=f(-2)-2f′(-2)+12=-12(*),把x=-2代入切线方程得:y=-1,所以切点坐标为(-2,-1),即

方程x3+6x2+5x=y3-y+2的整数解(x,y)的个数是(  )

原方程可化为x(x+1)(x+2)+3(x2+x)=y(y-1)(y+1)+2,∵三个连续整数的乘积是3的倍数,∴上式左边是3的倍数,而右边除以3余2,这是不可能的.∴原方程无整数解.故选A.

已知函数f(x)=x3+1,求曲线y=f(x)经过P(1,2)的切线方程

f'(x)=3x^2f'(1)=3由点斜式得切线方程:y=3(x-1)+2=3x-1

函数y=x3+x的递增区间是(  )

y′=3x2+1>0∴函数y=x3+x的递增区间是(-∞,+∞),故选C

由曲线y=x3-2x与y=x2所围成的图形面积是为大

令x3-2x=x2,求出两曲线的交点然后进行积分,即可求出面积再问:求了,和答案不一样再答:曲线y=x3-2x与y=x2是有3个交点噢,X=-1,X=0,X=2积分求面积时,需要分段再问:我算的结果和

已知点P(x,y)是圆(x-3)2+(y-3

令yx=k,则y=kx,当直线y=kx与圆(x-3)2+(y-3)2=6相切时,k有最值即:|3k−3|1+k2=6,解得3±2故yx的最大值是3+2故答案为:3+2.

设函数f(x)=4x3+ax+2,曲线y=f(x)在点P(0,2)处切线的斜率为-12,求,a的值 【4x3 是 4乘以

f(x)'=12x2+a因为在点P(0,2)处f(o)'=-12所以把X=0带入第一行得a=-12斜率就是对函数进行一次求导

点P在曲线y=x3-x+23

y′=3x2-1≥-1,∴tanα≥-1,∴[0,π2)∪[3π4,π),故答案为[0,π2)∪[3π4,π)

求函数y=(x-2)3-x3的最大值

y=x³-6x²+12x-8-x³=-6x²+12x-8=-6(x-1)²-2所以x=1,y最大=-2