质量48kg的小华,500m100秒,阻力为重量的1 12

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/02 14:36:51
质量48kg的小华,500m100秒,阻力为重量的1 12
1.可动的平板车质量为m=500kg,车上两端各站一个人:甲的质量m1=60kg,乙的质量m2=40kg.在t=0时刻他

动量:P=mv冲量I=Ft,冲量改变系统动量I=P2-P1=Ft1:这道题我觉得有些疑问,不知道出题者的意思.主要是当甲跑到另一端时的状态,是具有速度V能,还是静止.我觉得应该是静止状态,这样,x不用

定滑轮两端拴着不同质量的两个物体,一个m1质量20.1kg,另一个m2为9.5kg,请问绳子受到的张力为什么不等于(m1

因为m1>m2,所以释放后,m1下降,m2升高,二者加速度大小相等.对m1分析受力用牛顿第二定律m1*g-T=m1*a对m2:T-m2*g=m2*a二式相加==>(m1-m2)*g=(m1+m2)a代

物体A的质量m1=1kg,静止在光滑水平面上的木板上的质量为m2=0.5kg,长L-1m,

(1):A以V0=4米每秒的初速度滑上木板B的上表面时对A有m1a1=f=μm1g,得a1=μg=2m/s²,正在做匀减速运动对B有m2a2=f=μm1g,得a2=μm1g/m2=4m/s&

质量m1=10kg的物体在竖直向上的恒定拉力F作用下

1.物体是匀加速上升的,故物体处于超重状态,即拉力大于物体的重力,所以拉力F=m1(a1+g),解得F=105N2.同理,.物体是匀加速上升的,故物体处于超重状态,即拉力大于物体的重力,所以拉力F=m

如图所示,甲车的质量为m1=2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为m=1kg的小物体,乙车质量为m2=

(1)甲,乙两车碰后瞬间,乙车的速度V2,甲车的上表面光滑,小物体速度为零甲,乙两车动量守恒,选向左方向为正:m2*vo=m1*v1+m2*v2代入得:V2=1m/s(2)物体在乙车表面上滑行t相对乙

如图所示,在足够长的光滑水平面上,放置一长为L=1m、质量为m1=0.5kg的木板A,一质量为m2=1kg的小物体B以初

(1)假设B刚从A上滑落时,A、B的速度分别为v1、v2,A的加速度a1=μm2gm1=4m/s2B的加速a2=μg=2m/s2由位移关系有L=v0t−12a2t2−12a1t2代入数值解得:t=1s

如图所示,质量为m1=2kg,m2=3kg的物体用细绳连接放在水平面上

由F=ma水平力F施加在m1上a1=T/m2=1/3m/s^2F1=(m1+m2)a1=5/3N方向向左水平力F施加在m2上a2=T/m1=0.5m/s^2F21=(m1+m2)a2=2.5N方向向右

三个物体的质量分别为m1=2kg,m2=4kg,m3=6kg,各以一定的速度沿光滑水平面运动,

(1)能量守恒,物体的的动能等于那个恒力制动做的功1/2mv^2=FS物体速度相同,力又等量,吗、那么,s只与质量有关,所以S1:S2:S3=1:2:3(2)力相等,那么制动加速度与质量成反比,a1:

(2012•东城区模拟)如图所示,水平桌面距地面的高度h=0.80m.可以看成质点的小金属块C的质量m1=0.50kg,

(1)小金属块经历了三段运动过程:在木板上的匀加速直线运动,从木板上滑落后在桌面上的匀减速直线运动,离开桌面后的平抛运动.设小金属块做平抛运动的时间为t3,h=12gt23t3=2hg=2×0.801

10.(16分)如图所示,质量m1=0.3 kg

您的思路非常正确,解出方程的解也是正确的0.24可能是您算错了,解错了(不懂追问,

水平桌面距地面的高度h=0.80m.可以看成质点的小金属块C的质量m1=0.50kg,放在厚度不计的长木板AB上.木板长

昆明市某年期末考试的一道附加题1、用小金属块落地点到桌边的水平距离s=0.08m算出金属块在桌面边缘的速度2、用动能定理得出金属块在木块上滑动的距离.牛顿第二定律也可以求出,因为金属块加速和减速过程加

如图所示,物体A的质量是m1=2kg,长木板B的质量为m2=1kg..

(1)经过1s,A.B的速度相等.对a,b分别作受力分析,a的加速度是4m/s2,b的加速度是2m/s2.因为最终的速度是相等的,于是有等式,a的末速度等于b的末速度.即2t(b的速度表达式,初速度为

如图所示,把质量m1=4 kg的木块叠放在质量m2=5 kg 的木块上.

相对滑动时,二者加速度相等.(F1-um1g)/m1=um1g/m2带入解得:u=1/6(F2-um1g)/m2=um1g/m1解得:F2=15N

如图所示,一质量m1=0.45kg的平板小车静止在光滑的水平轨道上,车顶右端放一质量m2=0.2kg的小物体,小物体可视

(1)以子弹和小车组成的系统为研究对象,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:mv0=(m1+m0)v1,解得:v1=mv0m1+m0=10m/s;(2)以小车(含子弹)和物块系

如图所示,一质量m1=0.45kg的平板小车静止在光滑的水平轨道上,车顶右端放一质量m2=0.2kg的小物体,小物体可视

问的很好,动量守恒的应用条件是:系统不受外力,或者内力很大,外力很小,作用时间很短.那么,子弹进入车的过程中,子弹和车构成的系统动量守恒,容易理解.其实,子弹、车、物块三者构成的系统动量也是守恒的,只

一个质量为m1=1kg长为L=65m的木板在光滑的地面上以速度v1=2m/s向右滑行,一个质量为m2=2kg的小木块(可

(1)木板向右运动到最远点时速度为0,系统动量守恒(向左为正): m2v2-m1v1=m2 v3,解得:v3=m2v2−m1v1m2=2×14−1×22m/s=13m/s系统能量守

如图所示,一质量m1=0.45kg的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m2=0.4kg的小物体,小物体可视

先对子弹和小车组成的系统进行分析.因为子弹与车相互作用时间很短,所以子弹射入小车到静止的过程中子弹和小车组成的系统水平方向动量守恒,设两者共同的速度为v1,那么有m0v0=(m0+m1)v1解得v1=

质量m1=0.01kg的子弹以v1=500m\s的速度水平击中质量m2=0.49kg的木块,另一木块的质量m3=0.5k

M1V1=(M1+M2)V2此时子弹和木块2共速V2=10米/秒此时的能量为1/2(M1+M2)V^2第二过程是(M1+M2)V2=(M1+M2+M3)V3V3=5米/秒此时的能量为1/2(M1+M2