质点沿x轴运动加速度与位置a=2 6X^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:07:17
(1)t时刻质点的速度:v=vo-(2t/2)t=vo-t^2=1-t^2t时刻质点的位置:s=xo+∫vdt=xo+∫(vo-t^2)dt=xo+vot-1/3t^3=3+t-1/3t^3(2)v=
a=v'=x''=6x^2+2撇表示对时间微分x''=dx'/dt=(dx'/dx)*(dx/dt)=v(dv/dx)=6x^2+2vdv=(6x^2+2)dx积分:v^2/2=2x^3+2x+Cx=
怎么最近都是这种题目啊,数学知识学到了就简单了
a=dv/dt=dv/dx*dx/dt=dv/dx*v=3+9x^2vdv=(3+9x^2)dxv^2=6x+6x^3+c因为x=0v=0c=0v^2=6x+6x^3v=根号6x+6x^3
由题意X(t)''=V'(t)=kt积分得V(t)=k/2·t^2+V0X(t)=k/6·t^3+Vo·t+X0
1.dv/dt=2+6x22.dx/dt=v把第二个式子写成dt=dx/v代入到一式,得到:vdv=(2+6x2)dx然后积分,懒得算了你要是还不会就看看书吧
初速度或者初始加速度这样的条件必须有,否则没法开始算……我假设下初速度为v0吧,那么根据加速度的微积分意义,有a=dv/dt=kv则dv/v=k·dt两倍积分v't'∫dv/v=k∫dtv0t0得到,
由a=dv/dt=(dv/dx)(dx/dt)=v(dv/dx)=2+6x^2v*dv=(2+6x^2)dx对上式积分(对v积分的下限为x=0时刻的速度,上限为任意位置处的速度v);对x积分的下限为0
a=2+6x^2dv/dx*dx/dt=2+6x^2vdv=(2+6x^2)dx∫vdv=∫(2+6x^2)dxv^2=4x+4x^3+c(1)式x=0,v=10代入得c=100(1)式开方得v=2根
我就全打汉字啦,S等于V0T=1/2at^2,V=v0+at,且a=-kv,那所以a就等于-kv0-kat,所以a=(-kv0)/(1+kt,)带入S等于V0T=1/2at^2,就可以得到S=v0t*
v(t)=v0*exp(-k*t),x(t)=x0-v0*(exp(-k*t)-1)/k
a=dx/dt=(dv/dx)*(dx/dt)这个显然成立,仅仅是先除dx,再乘以dxa=dx/dt=(dv/dx)*(dx/dt)中v=dx/dt,所以)a=v*(dv/dx)再问:那v=dx/dt
1S=t^3-2t^2+tv与时间t的关系即S的微分.即:v=3t^2-4t+1a与时间t的关系即V的积分.即:v=6t-42(1)a=1-t^2+t即v微分,用[积分上限无限大,下限是0]积分积回去
1、a=dv/dt=6t(m/s^2);2、s=Svdt=S(1+3t^2)dt=(t+t^3)+C,t=0时,s=0,代入得:C=0,所以:s=t+t^3(m).
设在X点处的速度为v(x);法一:v(x)^2-v(0)^2=2ax;v(0)=0,所以,v(x)=根号(2ax);法二:v(x)=at;1/2*a*t^2=x;由以上两式得,v(x)=根号(2ax)
a=d(dx/dt)/dt=x"=-kx,得一个常系数二阶微分方程x"+kx=0,其一般解的形式为x=Acos(Kt)+Bsin(Kt),其中A、B为待定系数,而K=√k.v=dx/dt=-AKsin
a=dv/dt=2+6x^2dx/dt=v两式相除得dv/dx=(2+6x^2)/v即v*dv=(2+6x^2)dx两边积分可得∫v*dv=∫(2+6x^2)dx积分上下限分别为(0~v)和(0~x)
答案错了吧a=dv/dt=(dv/dx)*(dx/dt)dx/dt=vv*dv=(2+6x^2)dx初值是速度和x都是0两边求积就可以了(1/2)v^2=2x+2x^3再化简一下玖行了