P(A1∪A2∪A3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:47:11
恰有一个所以有三种情况只有A1,A2,A3P=P(A1)(1-P(A2))(1-P(A3))+(1-P(A1))P(A2)(1-P(A3))*(1-P(A1))(1-P(A2))P(A3)=0.276
有3中情况 P=0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=0.36P=1-0.6*0.5*0.3=0.91再问:??是正解么?再答:是的
3(1-p)p^2.再问:能否解答一下为什么,计算过程是怎样的再答:一个不发生事件的概率为1-p,两个发生事件的概率为p*p,这样的情况有3种,分别是A1不发生、A2不发生、A3不发生。
(a1+a2)/a3+(a2+a3)/a1+(a3+a1)/a2=(a1/a2+a2/a1)+(a2/a3+a3/a2)+(a3/a1+a1/a3)a1,a2,a3同号,则a1/a2,a2/a1,a1
证明:a1,a2,a3线性无关设k1(a1)+k2(a1+a2)+k3(a1+a2+a3)=0(k1+k2+k3)a1+(k2+k3)a2+(k3)a3=0因为a1,a2,a3线性无关所以k1+k2+
8个:M={a4,a5,a6},M={a1,a4,a5,a6},M={a2,a4,a5,a6},M={a3,a4,a5,a6}M={a1,a2,a4,a5,a6},M={a1,a3,a4,a5,a6}
an/(a1+a2+.+an)²<an/(a1+a2+...a(n-1))(a1+a2+...+an)=[(a1+a2+..+an)-(a1+a2+...a(n-1)]/(a1+a2+...
(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可
把三个正整数化为A,B,a*b*c=a+b+ca(b*c-1)=(b+c)若b*c=1,b+c=0,a取任意数.解得,b、c不存在实数解若b*c不等于1,满足a=(b+c)/(b*c-1)就可以了.如
1.考虑使用间接法.一个也没出现的概率P0=(2/3)^3=8/27∴至少出现一个的概率P=1-p0=19/272.恰好出现一个的概率包含三个事件,分别是A1,A2,A3各仅出现一次.∴P=(1/3)
因为过一点且平行于定直线的直线有且只有一条,课本上有这个定理吧,记不太清了,大概就这个意思
P(A1)=A1/X;P(A2)=A2/X;P(A3)=A3/X;P(A1)+P(A2)+P(A3)=(A1+A2+A3)/X.P(A)=A/X.A>=A1+A2+A3不知道成不成立所以结论错误再问:
a1+a2+a3+a4+a5=a3+a31q+a31q2+a3q+a3q2=3116,1q+1q2+1+q+q2=314,解得q=2∴a1=116,a2=18,a3=14,a4=12,a5=1;∴1a
集合B必包含(a8,a9,...a100),那么满足个数则为A的子集个数,即2^7=128个
若∧是由特征值λ1,λ2,...,λn构成的对角矩阵,则P^(-1)AP=∧不一定有A=P^(-1)∧P
P(A1∪A2∪……An)=P(A1)+P(A2)+...+P(An)
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)
因为p既与a1有关又与公差d有关p=10a1+10*9/2*d=10a1+45d想要具体解答请给出详细条件追问,
证明:P(A)〉=A1交A2交A3=P(A1)+P(A2)+P(A3)-a1并a2-a1并a3-a3并a2+A1A2A3=P(A1)+P(A2)+P(A3)-a1并(a2+a3)-a2并a3并(1-a