P(A1∪A2∪A3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:47:11
P(A1∪A2∪A3)
设随机事件A1A2A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.7,求,A1,A2,A3恰有一

恰有一个所以有三种情况只有A1,A2,A3P=P(A1)(1-P(A2))(1-P(A3))+(1-P(A1))P(A2)(1-P(A3))*(1-P(A1))(1-P(A2))P(A3)=0.276

概率:设随机事件A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.7求:(1)A1,A

有3中情况  P=0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=0.36P=1-0.6*0.5*0.3=0.91再问:??是正解么?再答:是的

设A1,A2,A3是三个相互独立的随机事件,且P(A1)=P(A2)=P(A3)=P(0

3(1-p)p^2.再问:能否解答一下为什么,计算过程是怎样的再答:一个不发生事件的概率为1-p,两个发生事件的概率为p*p,这样的情况有3种,分别是A1不发生、A2不发生、A3不发生。

已知a1a2a3同号,(a1+a2)/a3+(a2+a3)/a1+(a3+a1)/a2的最小值是

(a1+a2)/a3+(a2+a3)/a1+(a3+a1)/a2=(a1/a2+a2/a1)+(a2/a3+a3/a2)+(a3/a1+a1/a3)a1,a2,a3同号,则a1/a2,a2/a1,a1

若a1,a2,a3线性无关.证明a1,a1+a2,a1+a2+a3 线性无关.

证明:a1,a2,a3线性无关设k1(a1)+k2(a1+a2)+k3(a1+a2+a3)=0(k1+k2+k3)a1+(k2+k3)a2+(k3)a3=0因为a1,a2,a3线性无关所以k1+k2+

满足M∪{a1,a2,a3}={a1,a2,a3,a4,a5,a6}的集合M的个数是多少?

8个:M={a4,a5,a6},M={a1,a4,a5,a6},M={a2,a4,a5,a6},M={a3,a4,a5,a6}M={a1,a2,a4,a5,a6},M={a1,a3,a4,a5,a6}

设a1,a2,.an是正数.求证a2 /(a1+a2)^2+a3/(a1+a2+a3)^2+.+an/(a1+a2+.+

an/(a1+a2+.+an)²<an/(a1+a2+...a(n-1))(a1+a2+...+an)=[(a1+a2+..+an)-(a1+a2+...a(n-1)]/(a1+a2+...

设a1,a2,a3为正数,求证a1*a2/a3+a2*a3/a1+a3*a1/a2>=a1+a2+a3

(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可

三个正整数a1,a2,a3,且a1+a2+a3=a1×a2×a3,a1≥1,a2≥2,a3≥3,求a1,a2,)

把三个正整数化为A,B,a*b*c=a+b+ca(b*c-1)=(b+c)若b*c=1,b+c=0,a取任意数.解得,b、c不存在实数解若b*c不等于1,满足a=(b+c)/(b*c-1)就可以了.如

设A1,A2,A3相互独立,且P(Ai)=1/3,i=1,2,3.求A1,A2,A3中

1.考虑使用间接法.一个也没出现的概率P0=(2/3)^3=8/27∴至少出现一个的概率P=1-p0=19/272.恰好出现一个的概率包含三个事件,分别是A1,A2,A3各仅出现一次.∴P=(1/3)

已知直线a1与a2都经过P点,并且a1与a3平行,a2与a3,那么a1、a2必重合,这是因为?.

因为过一点且平行于定直线的直线有且只有一条,课本上有这个定理吧,记不太清了,大概就这个意思

概率论 A1A2A3属于A,证明P(A)>=P(A1)+P(A2)+P(A3)

P(A1)=A1/X;P(A2)=A2/X;P(A3)=A3/X;P(A1)+P(A2)+P(A3)=(A1+A2+A3)/X.P(A)=A/X.A>=A1+A2+A3不知道成不成立所以结论错误再问:

a1+a2+a3+a4+a

a1+a2+a3+a4+a5=a3+a31q+a31q2+a3q+a3q2=3116,1q+1q2+1+q+q2=314,解得q=2∴a1=116,a2=18,a3=14,a4=12,a5=1;∴1a

已知集合A={a1,a2,a3,a4,a5,a6,a7},A∪B={a1,a2,a3,a4,a5,a6,a7.,a100

集合B必包含(a8,a9,...a100),那么满足个数则为A的子集个数,即2^7=128个

线性代数问题设对称阵A 其特征值互不相等 特征值对应的特征向量分别为a1,a2,a3.an则P=(a1,a2,a3.an

若∧是由特征值λ1,λ2,...,λn构成的对角矩阵,则P^(-1)AP=∧不一定有A=P^(-1)∧P

若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2 ()

若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)

在等差数列{an}中,已知a1+a2+a3+.+a10=p,an

因为p既与a1有关又与公差d有关p=10a1+10*9/2*d=10a1+45d想要具体解答请给出详细条件追问,

若A1A2A3属于A ,则有P(A)〉=P(A1)+P(A2)+P(A3)-2,其中A1A2A3为A1交A2交A3

证明:P(A)〉=A1交A2交A3=P(A1)+P(A2)+P(A3)-a1并a2-a1并a3-a3并a2+A1A2A3=P(A1)+P(A2)+P(A3)-a1并(a2+a3)-a2并a3并(1-a