O是正方形ABCD的中心,角EAF=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:56:04
O是正方形ABCD的中心,角EAF=45度
如图,在正方形ABCD-A1B1C1D1中,E,F分别是棱C1D1,B1C1的中点,O是底面A1B1C1D1的中心,那么

在底面A1B1C1D1中,由C1O垂直B1D1(因为正方形对角线互相垂直)EF平行B1D1(EF是三角形B1D1C1的中位线)可知EF垂直于C1O又因为CC1垂直于底面A1B1C1D1,所以EF垂直于

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

点O是边长为4正方形ABCD的中心,点E,F是AD,BC的中点,沿对角线AC把正方形ABCD折叠成直二面角D-AC-B.

1.以O为原点,OA,OD,OB为x,y,z轴建立坐标系,则E(2,2,0),F(-2,0,2)所以向量OE=(2,2,0),OF=(-2,0,2)cos=OE*OF/(|OE||OF|)=(-4+0

如图,两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心

1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1

已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1

证明:在正方体中,DD'⊥平面ABCD∴DD'⊥AC,在正方形ABCD中,AC⊥BD∴AC⊥平面BDD'B'因此,AC⊥OE设正方体的边长为2,∴DO=BO=√2,BE=EB'=1∴D'O=√6,OE

ABCD是正方形,O是正方形中心PO垂直底面ABCD.E是PC的中点.求证:PA平行平面BDE.二,平面Pac垂直平面.

1)连接EO,考虑△PAC,E是PC的中点,O是AC的中点,EO为中位线,所以PA∥EOEO在平面BDE中,PA平行平面BDE2)正方形对角线BD⊥ACPO⊥面ABCD,所以PO⊥BD所以BD⊥面PA

如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=2,AB=2,求证:

证明(1)∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE(2)∵PO⊥底面ABCD,∴PO⊥BD,又∵AC⊥BD,且AC∩PO=O∴BD⊥平

在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证:OE⊥平面ACD1.

证明:连接B1D,A1D,∵B1B⊥平面ABCD,∴B1B⊥AC,又AC⊥BD,∴AC⊥平面B1DB,∴AC⊥B1D,同理可证AD1⊥B1D,AC∩AD1=A,∴B1D⊥平面ACD1,∵B1E=BE,

把正方形ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O是原正方形ABCD的中心,求折起后角EOF

/>过F作FG垂直于AC,G在AC上,连接GE;因为二面角B-AC-D为直二面角,所以FG垂直于平面ACD(直二面角的性质),因为FO为平面ADC的斜线,OE在平面ADC内,套用折叠角公式(俗称三扣定

把正方形纸片ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O是原正方形ABCD的中心,求折纸后的∠

建立空间坐标系:原正方形ABCD的中心O做坐标系原点O,AC在x轴上,OB在y轴正向上,OD在z轴正向上.设原正方形对角线长为2.各点坐标如下:O(0,0,0),A(1,0,0),B(0,1,0),C

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

把正方形纸片ABCD沿对角线AC对折成直二面角,E和F分别是AD和BC的中点,O是正方形的中心,求角EOF的度数.

设边长为4,OE=OF=2.还要求EF.过E作EG垂直于AC交AC于G,EG垂直于FG,在直角三角形EFG中求得EF=二又根号三.用余弦定理可求出角EOF=120度

1.正方形ABCD和OEFG的边长都是4,O是正方形ABCD的中心,则图中两正方形公共部分的面积是

1.4看图(http://hi.baidu.com/%CF%FB%CF%C4%BE%B2%D3%EA/album/item/50c8ebca49089f8ac81768c0.html)(连接BO在正方

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

ABCD是正方形.O是正方形的中心.PO垂直底面ABCD.E是PC的中点.求证1:PA平行平面BDE.2:平面PAC垂直

1)O是AC中点,E是PC中点,则中位线OE平行PA,故PA平行OE所在平面.2)PO垂直底面ABCD,则PO垂直DB,而AC与BD是底面正方形的对角线,故BD垂直AC,故DB垂直平面PAC,平面BD

O是正方形ABCD的中心,BE平分角DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,

因为BC=DC,∠BCD=角DCF=90°,CE=CF所以△BCE全等于△DCF所以∠F=∠BEC因为角BEC=∠DEG所以∠F=∠DEG因为∠F+∠CDF=90°所以∠DEG+∠CDF=90所以△D

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

已知,如图O是正方形ABCD的中心,

(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(

如图,在正方体ABCD-A1B1C1D1中,O是正方形BCC1B1的中心,求证:

证明:如图,(1)∵ABCD-A1B1C1D1为正方体,∴BC1⊥B1C,DC⊥面BCC1,∴DC⊥BC1,又DC∩B1C=C,∴BC1⊥平面B1CD,又DO⊂面B1CD,∴BC1⊥DO;(2)连结A

一道证明几何题在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证OE垂直ACD1

1)连接AC,BD因为AC垂直于BD,BB1垂直于AC(BB1垂直于平面ABCD)所以AC垂直于面DBB1则AC垂直于DB12)连接DC1因为DC1垂直于CD1,C1B1垂直于CD1(B1C1垂直于平