试证明关于x的方程(m²-8m 17)x² 2mx 2=0,无论m取何值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:12:58
题目有误:应是: 关于x的方程(m²-8m+17)x²+2mx+1=0,不论m为何值,该方程都是一元二次方程 证明: &nbs
m^2-8m+17为二次项系数(m-4)^2+1恒不等于0所以不论m取何值,该方程都是一元二次方程
证明:m方-8m+20的△
证明:∵m-8m+17=(m-4)+1不论m取何值,(m-4)+1≥1即m-8m+17≥1∴方程(m-8m+17)x+2mx+1=0的二次项x的系数恒不等于0即方程都是一元二次方程
若要使得关于x的方程(m²-6m+10)x²+2x+1=0都是一元二次方程,则必然有二次项系数不为0.因为:m²-6m+10=(x-3)^2+1≥1不可能为0,所以:关于
m8-8m+17=m²-8m+16+1=(m-4)²+1平方大于等于0所以(m-4)²+1≥1>0大于0,即x²系数不等于0所以无论m为何值,该方程都是一元二次
m²-8m+17=(m-4)²+1∵(m-4)²≥0∴m²-8m+17≥1>0恒成立∴无论m取何实数,关于x的方程(m²-8m+17)x²+
二次项系数=m²-8m+17=m²-8m+16+1=(m-4)²+1>0因此此必为一元二次方程.
证明:m2-8m+17=(m2-8m+16)-16+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1≠0,∴无论m取何实数关于x的方程(m2-8m+17)x2+2mx+1=0都是一元二次
证明:如果是一元二次方程,则x的二次方项的系数不为0∵m²-8m+17=(m-4)²+1>0∴m²-8m+17≠0因此,是一元二次方程.
判别式=(m+2)^2-4(2m-1)=m^2-4m+4+4=(m-2)^2+4>0恒成立.所以总有两个不等实根.
m平方-8m+17=m²-8m+16+1=(m-4)²+1≠0所以无论m取何值,该方程为一元二次方程
m²-8m+17=(m²-8m+16)+1=(m-4)²+1≥1∴无论m为何实数,关于x的方程(m²-8m+17)x²+2m+1=0都是一元二次方程
因为无论m为何值,m^2-8m+17=(m-4)^2+1>0,所以关于x的方程:(m^2-8m+17)x^2+2mx+2=0都是一元二次方程.
x²的系数=m²-8m+16+1=(m-4)²+1≥1>0x²系数大于0,即不会等于0所以不论m为合值,该方程都是一元二次方程.
∵二次项的系数=m*m-8m+17=(m-4)²+1恒大于0.∴无论m取何值时,该方程是一元2次方程
(m²-8m+17)x²+2m+1=0证明二次系数m²-8m+17=m²-8m+16+1=(m-1)²+1≠0∴无论m取何实数,关于x的方程(m
二次项系数=m²-8m+17=m²-8m+16+1=(m-4)²+1因为平方数大于等于0所以(m-4)²≥0所以(m-4)²+1≥1>0所以二次项系数