试确定随机变量X的分布律P{X=K}=C N(K=1,2........n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:14:20
试确定随机变量X的分布律P{X=K}=C N(K=1,2........n)
概率论联合分布律计算已知随机变量X,Y服从同一分布,且X的分布律为P(X=-1)=1/4,P(X=0)=1/2,P(X=

已知随机变量X,Y服从同一分布,且X的分布律为P(X=-1)=1/4,P(X=0)=1/2,P(X=0)=1/4.若P{丨X丨=丨Y丨}=0,求(X,Y)联合分布律.答:P(-1,-1)=0,P(-1

设随机变量X的概率分布为P{X=k}=e-1/K!

P(1)E(X)=D(X)=1E(X^2)=2P(X=EX^2)=P(X=2)=1/(2e)如有意见,欢迎讨论,共同学习;如有帮助,

设离散型随机变量X的分布函数F(x)求P{X

P{X≠1}=1-P{X=1}=1-(F(1+0)-F(1-0))=1-(0.8-0.4)=0.6P{X再问:竖线表示的是什么意思?为什么要除?再答:没学过条件概率么?再问:哦!谢谢!

已知离散型随机变量X的分布函数F(x)=P{の

F(の)-F(の-0)F(の-0)代表在该点的左极限再问:怎么算的啊?再答:这个貌似是定义呢。书上绝对有的。要是你的书不好的话,那就看看考研复习全书吧,那上面有。你自己可以引申啊。在一个区间内,【a.

设F(x)是离散型随机变量X的分布函数,若p(a

0再问:怎么得出的呢?再答:F(b)-F(a)=P(a

设随机变量X的分布律为X -2 -1 0 1 2,求Y=X^2的分布律,Y的分布函数,P{Y

设随机变量X的分布律为X-2-1012P1/51/61/51/1511/30于是,Y=X^2的分布律为X^2014P1/57/3017/30Y的分布函数为F(y)=P{Y

问一道概率密度函数?设随机变量X的概率函数为f(x)=k/(1+x的平方),试确定常数k,并求分布函数F(x)和P(-1

积分之,在(-∞,+∞)内,∮(k/1+x^2)=1.即k*arctanx|(-∞,+∞)=1.k*〔π/2-(-π/2)〕=1.所以k=1/π.知道k,分布函数就容易了.F(x)=1/π*arcta

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

已知离散型随机变量(X,Y)的分布列,求P(X>Y) 详细见图片.

(1)P(X>2,Y≤2)=P(X=3,Y=2)+P(X=3,Y=1)+P(X=3,Y=0)=5/30+4/30+3/30=2/5(2)P(X>Y)=P(X=1,Y=0)+P(X=2,Y≤1)+P(X

设随机变量X的分布律为 X -2 ,0 ,2 P 0.4 ,0.3 ,0.3 问E(X ^2)=?

简单噻,先求X^2的分布律X^204P0.30.7EX^2=0*0.3+4*0.7=2.8

设随机变量X服从(-1,16),借助于标准正态分布的分布函数计算:确定a,使得P(X>a)=P(X

您好~X是不是服从N(-1,16)?如果是这样的话,因为正态分布关于平均值是对称的,所以要使P(X>a)=P(X

设随机变量X的分布函数为,如下图,求P{2<X≤2.5}

ln1.25再问:大哥,步骤啊再答:(ln2.5-ln2)/(lne-ln1)对否?再问:貌似不对,你这算下是0.29多再答:不就是这么多么反正没过一再问:话说ln1.25是怎么怎么得到的,我想知道算

设随机变量X的分布函数F(X)=A+Barctanx,求p﹛|x

对于分布函数有F(X)=A+BarctanxF(-∞)=A+B(-π/2)=0F(+∞)=A+B(π/2)=1A=1/2,B=1/π即F(X)=1/2+arctanx/πF(1)-F(-1)=1/2+

设离散型随机变量X的概率分布为P.

需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范

设随机变量X的分布律为P{X=k}=aλ

由于∞k=0P{X=k}=1,又eλ=∞k=0λkk!,∴a∞k=0λkk!=aeλ=1∴a=e-λ

设随机变量X的分布律为P(X=k)=a(λ^k)/k!,(k=0,1,2,…),其中λ>0为已知常数.试确定常数a.

sum(f(k),a,b)表示对f(k)进行累加,从a到bsum(P(X=k),0,正无穷)=1(即概率和为1)又因为sum((λ^k)/k!,0,正无穷)=e^λ(由e^x的泰勒级数可知)所以a=e