试确定常数c使为的无偏估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:31:13
把题目中给的式子按照泰勒公式在零处展开,然后需要几阶就把x这个阶前面的阶数的系数都弄成0即可
只要证明【(a+bcosx)sinx-x】/(x^5)(在x=0处是0/0型)在x趋近于0时取值为1它在0处的极限=分子分母分别关于x求导(一个定理),得到[acosx-bcos2x-1]/5x^4,
1、abc有0个负数时,a/|a|+b/|b|+c/|c|+abc/|abc|=4;2、abc有1个负数时,a/|a|+b/|b|+c/|c|+abc/|abc|=0;3、abc有2个负数时,a/|a
因为分段函数f(x)=3sinx,x0-,limf(x)=lim3sinx=3*0=0;对x->0+,limf(x)=limf(0)=aln1+b=b;所以b=0,f(x)=aln(1+x),当x≥0
对Ce^-(2x+4y)二次积分,下限和上限都是0到正无穷,结果应该是1.这是因为一个完整分布的和应该是1,算出来的结果是C*(1/8)=1,C=8再问:答案是对的,但是我不会求积分,能把过程写一下吗
因为两边之和大于第三边既a+b大于c所以a+b-c符号为正而a-b-c可以看成a-(b+c)同样是因为两边之和大于第三边所以a-b-c符号为负而a+b+c符号为正故该式子符号为负~
由归一性c+2c+3c+4c=1解得:c=0.1Eξ=-1c+3c+2*4c=10c=1Eξ^2=(-1)^2c+3c+2^2*4c=20c=2Dξ=Eξ^2-(Eξ)^2=2-1=1因为ξ只能取-1
三角形两边之和大于第三边所以b+c>aa+b>c所以a-b-c0三角形边长大于0所以a+b+c>0所以三个括号中是二正一负所以符号为负
因为a2+a6+a16为一个确定的常数又因为a2+a6+a16=3a8所以a8是一个确定的常数.1、s17=17(a1+a17)/2=17a9,与a8无关,所以不是一个确定的常数.2、s15=15(a
c:1/2*x1+1/2*x2肯定对的再问:��ô������ģ�再答:D(1/2*x1+1/2*x2)=1/2*D(X)D(2/3*x1+1/3*x2)=5/9*D(X)D(1/4*x1+3/4*x
cosx=1-1/2*x^2+o(x^2),于是a*x^2+b*x+c=1-1/2*x^2,即a=-1/2,b=0,c=1
1、2x+2y*dy/dx-y-x*dy/dx=02x-y=(x-2y)dy/dx所以dy/dx=(2x-y)/(x-2y)2、2y*dy/dx-2ay-2ax*dy/dx=0(2y-2ax)dy/d
题目哪里有a啊再问:好像打错了再答:恩
y'=3ax^2+2bx+cy"=6ax+2b点(1,-10)为拐点所以0=6a+2bx=-2为驻点所以12a-4b+c=0曲线过(1,-10)和(-2,44)-10=a+b+c+d44=-8a+4b
lim(e^(x^2)-(ax^2+bx+c))/x²=0即Lim(e^(x^2)-(ax^2+bx+c))=01-c=0c=1lim[(e^(x^2)-1]-(ax^2+bx))/x
sum(f(k),a,b)表示对f(k)进行累加,从a到bsum(P(X=k),0,正无穷)=1(即概率和为1)又因为sum((λ^k)/k!,0,正无穷)=e^λ(由e^x的泰勒级数可知)所以a=e