证明非零的幂零矩阵不能对角化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:10:37
矩阵可对角化的充要条件是有n个线性无关的特征向量.幂零矩阵的特征值只有0属于特征值0的特征向量是Ax=0的非零解自然与AX=0的基础解系有关系了AX=0的基础解系含n-r(A)个解向量所以A的属于特征
AB=0的充要条件若B中的列向量均为Ax=0的解.(也可以说为B是由Ax=0的解空间中n个向量构成的矩阵)
直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了
设a是A的特征值则a^m是A^m的特征值(定理)而A^m=0,零矩阵只有0特征值所以a^m=0所以a=0.即A的特征值只有0.又因为A≠0所以r(A)>=1所以AX=0的基础解系所含向量的个数n-r(
证明:因为(AA^T)^T=AA^T所以AA^T是对称矩阵.对任一m维非零向量X,X^T(AA^T)X=(A^TX)^T(A^TX)>=0(内积的非负性)所以二次型X^T(AA^T)X是半正定的所以A
AB=O反证法:如果A可逆,则(B可逆同理)两边同乘以A^(-1),得A^(-1)AB=A^(-1)OB=O与矩阵非零矛盾,所以这两个矩阵不可逆.
设A^m=0,特征值为c,则有Ax=cx,A^2x=c^2x,以此类推有A^mx=c^mx,由A^m=0有c^m=0,因此c=0,即A的特征值是0
最简单的0100
Jordan-Chevally分解再问:还能具体点吗?再答:http://www.math.org.cn/forum.php?mod=viewthread&tid=25545&highlight=%E
A^2=A则A的特征值只能是0或1再由A(A-E)=0得r(A)+r(A-E)=n即知A有n个线性无关的特征向量故A可对角化
A=[0,1,00,0,10,0,0]则A^3=O
非零矩阵是有元素不为零的矩阵
肯定非零啊再问:再问一下哈,如果A为n阶方阵,R[A]<n-1,为什么有A*=0啊?再问:喔!想通了了〜还是谢了哈
A可对角化时,存在可逆矩阵P使得P^-1AP=diag(a1,..,an)则R(A)=R(P^-1AP)=Rdiag(a1,...,an)=a1,...,an中非零元素的个数而A的特征值即a1,...
设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所
利用Jordan块和对称阵经济数学团队帮你解答.满意请及时评价.谢谢!
亲爱的楼主:在线性代数中,矩阵的初等变换是指以下三种变换类型J:(1)交换矩阵的两行(列);(2)以一个非零数k乘矩阵的某一行(列);(3)把矩阵的某一行(列)的z倍加于另一行(列)上.容易看出,这三
幂零矩阵的特征值只有0因为A≠0所以属于A的线性无关的特征向量的个数=n-r(A)再问:老师,再请教一个问题:怎样证明可逆实对称矩阵A与A^-1合同?麻烦了。再答:新问题另提问好不答题的也好多个采纳哈
证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1
因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么