证明正态分布的D(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:12:42
在X与Y相互独立的条件下才可以说X-2Y也服从正态分布.其参数为(独立条件下)均值E(X-2Y)=EX-2EY=0方差D(X-2Y)=DX+4DY=10,即X-2Y服从N(0,10)
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
D(X)=σ^2D(Y)=λpxy=Cov(X,Y)/根号(D(X)D(Y))Cov(x,y)=pxy(σ)根号λ=0.5(σ)根号λD(3x-2y)=D(3x)+D(-2y)+2Cov(3x,-2y
设X服从标准状态分布,Yn服从自由度为n的卡方分布,且X与Yn相互独立,则Tn=X/(Yn/n)^0.5服从自由度为n的t分布我们知道Yn可表示成n个相互独立同服从的标准正态随机变量的平方和,即Yn=
问题1你计算一下Z的期望和方差就行因为正态分布两个参数的意义就是期望和方差,所以问一个随机变量是什么杨的正态分布其实就是问他的期望和方差是多少的问题问题2方差的性质如果XY相互独立则D(aX+bY)=
正态分布的任意线性变换仍是正态分布,(X,Y)可以写成(U,V)线性变化形式,你给出的系数矩阵就是线性变换的系数矩阵
有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释
http://hi.baidu.com/zjhz8899/album/item/76898e265153ed28908f9d2f.html
设X~N(0,1),易得Y=-X~N(0,1),则Φ(x)=P(X<=x)=P(-X>=-x)=P(Y>=-x)=1-P(Y<-x)=1-P(Y<=-x)=1-Φ(-x)
Z=Y1-Y2F(z)=p{Z
这个直接套公式行了,得到的数是要查表的...挺好理解的吧,哪里不懂啊...
X服从正态分布,则X的平方服从卡方分布.
设X服从标准正态分布,概率密度为f(x)=1/(√2π)*e^(-x^2/2),x取任意实数则∫f(x)dx,(积分下上限是负无穷和正无穷),就是概率密度函数图像与x轴所围成的面积根据概率密度的性质可
P{|X|>2}+P{|X|
答:假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}.(注
注意到所以
请参阅〈概率论与数理统计〉安徽大学出版社杜先能编
这个题目的思路是,求出 Y 的分布函数,然后发现分布函数为正太分布,于是得证. 详细解答如下:
不乘的话最后求出来的就不是密度了,也就是说在负无穷到正无穷间的积分不等以1,而且,sigma的出现也是求导法则的结果,这个推导时没有错的.再问:能具体说说,求导是如何求出σp(x)再答:是σp(t)。
期望为2,方差为5