证明方阵的特征值的和等于主对角线的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:48:40
n阶方阵与对角矩阵相似的充分必要条件是它有n个线性无关的特征向量.你已知道一个方阵的特征值及其特征向量,只需看线性无关的特征向量是否有n个就行了.其实是这样:i重特征值都有i个线性无关的特征向量,则A
矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行
由于|A*|=1*(-2)*(-4)*(-8)=-64≠0,则A*可逆AA*=|A|E,得|AA*|=||A|E|=|A|^4*|E|=|A|^4,因此|A*|=|A|^3,可得|A|=-4AA*=|
由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应
写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11
对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之
对角线有主副之分,迹的和只是主对角线之和再问:亲,求法呢?再答:亲啊,主对角线元素相加啊再问:....其实我记得有别的求法...
对角阵,就是对角线上的元素不为0,其他元素都是0方阵A,有Ax=(lamda)x,满足这个式子,可以解出|A-(lamda)|=0这个行列式为0,可以解出N个lamda,把lamda排列在对角线上就是
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数
A正确,行列式为0,矩阵A不可逆B三个特征值,3个特征向量,相似C不同特征值对应的特征向量正交D,R(A)=2,齐次方程解的个数为1个,基础解系就是1个向量!您好,liamqy为您答疑解惑!如果有什么
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
由|E-3A|=0知道|1/3*E-A|=0,根据特征值定义可知1/3是矩阵A的一个特征值.因为3阶矩阵只有3个特征值,所以矩阵A的全部特征值就是-2,6和1/3.因为矩阵的行列式就是它所有特征值的乘
利用|xE-A^T|=|(xE-A)^T|=|xE-A|==>方阵A与方阵AT有相同的特征多项式,从而有相同的特征值.
U,V正交,则V^TU=0,所以A^2=(UV^T)(UV^T)=U(V^TU)V^T=0.设k是A的特征值,则k^2=0,所以k=0,A的n个特征值都是0.A的秩是1,所以方程组Ax=0的基础解系有
A代表矩阵,A和每一个向量作用,Ax=入x.这不就出来后边的等式了么.不明白HI我
是的,只能你用初等行变换基础解系是看整个行最简矩阵的所有的例题当然都是用的同样的方法哦
设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值
这是因为λ1,λ2,λ3是特征多项式的根特征多项式λ的最高次幂是λ^n故有那个等式再问:按照矩矩阵运算,矩阵A应该是对角矩阵,而且对角元是矩阵的特征值呀,两个矩阵相减是对角矩阵才有这个结果呀。可是矩阵
是的n阶多项式|A-λE|=0有n个根,重根按重数计.