证明方程sinx x 1=0在开区间(-2 π,2 π)内至少有一个根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:55:11
证明方程sinx x 1=0在开区间(-2 π,2 π)内至少有一个根
证明方程x的3次方-3x-1=0在区间[-1,0]内至少有一个根

f(x)=x^3-3x-1,f(-1)=-1-3*(-1)-1=1>0,f(0)=-1

证明方程x=sinx+a(a 0)在【0,1+a】上至少有一个根

f(x)=sinx-x+af(0)=a》0,f(1+a)=sin(1+a)-1《0故f(0)f(1+a)《0,由根的存在性定理:至少存在c使f(c)=0即:x=sinx+a(a》0)在【0,1+a】上

14、证明方程x^3-4x^2+1=0在开区间(0,1)至少有一个实根

首先令:y=f(x)=x^3-4x^2+1,由函数表达式可知y=f(x)在定义域R上处处连续,f(0)=1>0f(1)=1-4+1=-2

证明方程x3-3x+c=0在[0,1]上至多有一实根.

证明:设f(x)=x3-3x+c,则f'(x)=3x2-3=3(x2-1).当x∈(0,1)时,f'(x)<0恒成立.∴f(x)在(0,1)上单调递减.∴f(x)的图象与x轴最多有一个交点.因此方程x

高数,证明方程x^3-x+2=0在开区间(-2,0)内一定存在实根.…用连续的方法解

令f(x)=x^3-x+2f(-2)=-8+2+2=-40即f(x)在端点函数值异号,所以f(x)在区间必有零点.即方程在区间内一定有实根.

如何证明方程x^3-3x+1=0在区间(0,1)内有且只有一个根?

已经证明出他是单调减少的,然后又f(0)=1,f(1)=0,所以在(0,1)区间内,只有一个数x使得f(x)=0.如果不是单调的,那只能得出在该区间存在解,但不一定唯一,单调性保证了解的唯一性.证明:

证明方程x=sinx+1在(0,π)内至少有一个实根

令f(x)=x-sinx-1,显然f(x)在[0,π]内连续.而f(0)=-10,可见在(0,3π/2)内必然存在一个x=a,使f(a)=0.

证明方程x^3-x-2=0在区间(0,2)至少有一个根

方法一:设函数:f(x)=x^3-x-2,则f(0)=-20,即f(0)*f(2)√(1/3)时,f'(x)>0,即函数单调递增,且f(2)>0;当x=√(1/3)时,f(x)

证明方程sinx+x+1=0在开区间(-排/2,排/2)内至少一个根~

初等函数在其定义域区间内都是连续函数.f(x)=sinx+x+1为初等函数f(-π/2)=-1-π/2+1=-π/20因此在此区间至少有一实根.

用罗尔定理证明 证明:不管b取何值,方程x三次方-3x+b=0在闭区间-1,1上至多有一个实根

用反证法,假设x^3-3x+b=0在[-1,1]上有两个根(或多于两个),令f(x)=x^3-3x+b,则存在x1和x2属于[-1,1],使得f(x1)=f(x2)=0,根据罗尔定理,知存在ξ属于(-

证明方程x+sinx-1=0在0与π之间有实根

画y=sinx,y=-x+1的图像,在0与π之间有交点所以sinx=-x+1有实根,x+sinx-1=0

用罗尔定理证明方程sinx+xcosx=0在(0,π)内必有实根.

f(x)=xsinxf(0)=f(pi)=0,由罗儿中值定理,存在c,使得f'(c)=0,f'(c)=sinc+ccosc=0,

证明在复数范围内,方程|z|

证明:设这个方程有复数根为z=x+yi(x,y∈R),则应有x2+y2+(1−i)(x−yi)−(1+i)(x+yi)=5(1−i)(2−i)22+12化简得x2+y2-2(x+y)i=1-3i根据复

证明:方程x3-2x2+x+1=0在[-2,1]内实根

令f(x)=x³-2x²+x+1则f(-2)0因为f(x)在区间内连续所以由介值定理f(x)在区间内和x轴有交点所以有实根

证明方程sinx+x+1=0在开区间(-pi/2,pi/2)内至少有一个根?

运用根的存在定理呀,引入辅助函数f(x)=sinx+x+1.它在[-pi/2,pi/2]上连续,f(-pai/2)=-pai/20根据根的存在定理,则在(-pi/2,pi/2)内至少存在一个数x使得f

线性代数证明题目设A是n 阶方程,且满足AAt(t在右上) =En和|A|=-1,证明:|A+En|=0

|A+En|=|A+AAt|=|A(En+At)|=|A(At+En)|=|A||At+En|=-|At+En|因为(A+En)t=(At+En),所以|A+En|=|At+En|带回|A+En|=-

(1) 证明方程In X+2X-6=0在区间【2,e】内有根.

1、因为ln(x),2x,6都在[2,e]连续,所以f(x)=ln(x)+2x-6再[2,e]连续,又f(2)=ln2+4-6=ln2-20,所以f(x)在[2,e]中必过0点.2、x'2啥意思,没懂

证明方程x3-3x2+1=0在[0,1]内存在的唯一的实根

设y=f(x)=x³-3x²+1y'=3x²-6x=3x(x-2)当x属于[0,1]时x(x-2)

证明方程sinx-x+1=0在(0,π)内至少有一个根

令f(x)=sinx-x+1f(0)=1>0,f(π)=1-π再问:我还有好多不会的..我可以加你问你么..再答:在知道上向我定向求助即可~~乐意效劳再问:可是我有好多符号不会打啊..再答:±√2x≧