证明方程AX=Em有解的充分必要条件是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:03:22
证明方程AX=Em有解的充分必要条件是
方程个数小于未知数个数的线性方程组必有无穷多个解,是否成立,如何证明

不一定x+2y+z=1x+2y+z=23个未知数但显然两个不能同时成立所以无解

已知方程X-2AX+A=4,求证方程必有两个不相等的实数根

A)Δ=(2a)^2-4(a-4)=4(a-1/2)^2+15/4>0所以有不相等实数根.B)1*2a<0,a-4>0a<0,a>4无解.C)1*2a>0,a-4>0a>0,a>4所以a>4时有不相等

急求解线代证明题!A为n阶方阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆.

用反证法.假设A不可逆,则齐次线性方程组AX=0有非零解.而若x0是Ax=b的一组解,对AX=0的任意一个非零解x1,可知x0+x1也是Ax=b的解,即Ax=b不止一组解.于是Ax=b要么无解,要么不

已知关于x的方程ax²+bx+c=0(a≠0),且a+b+c=0,则此方程必有一根为

因为a+b+c=0和ax^2+bx+c=0所以a+b+c=ax^2+bx+c所以a+b=ax^2+bx所以x=1(看b的系数)

证明方程x2+2ax+a=4总有两个不相等的实数根

x^2+2ax+a-4=0判别式Δ=(-2a)^2-4(a-4)=4a^2-4a+16=4(a^2-a+1/4)+15=4(a-1/2)^2+15因为(a-1/2)^2≥0,所以4(a-1/2)62+

A是mn矩阵,A的秩是m小于n,则非齐次线性方程组AX=b必有无穷多解...求证明..

矩阵A的秩等于矩阵A的增广矩阵的秩所以AX=b必有解又因为A的秩

设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m

充分性:当r(A)=m时,则A是行满秩的,A多添任一列向量组成的增光矩阵还是行满秩的,即有r(Aei)=m,其中ei是单位阵的第i列,于是方程Ax=ei有解bi,令X=【b1b2...bm】,则AX=

关于X的方程ax²+bx+c=0中,系数a,b,c满足a+b+c=0,则该方程必有一根为

1你把1代入方程再问:我要过程再答:c=-a-b原方程为ax^2+bx-a-b=0a(x+1)(x-1)+b(x-1)=0(x-1)[(a(x+1)+b]=0所以必有一个根为1如果是选择题,直接代入

已知二次函数f(x)=ax的平方+bx=c(1)若a>b>c,试证明f(x)必有2个零点

令f(x1)>f(x2),构造函数F(x)=f(x)-½[f(x1)+f(x2)]∴F(x1)>0,F(x2)

试证明方程px的平方-(p+2)x+1=0必有实数根

你好!当p=0时,方程即-2x+1=0,有根x=1/2当p≠0时,Δ=(p+2)²-4p=p²+4>0方程有实数根综上,原方程必有实数根

设A是m行n列的矩阵,且线性方程组Ax = b有解.证明:A的转置的列空间R(A^T)必有Ax = b的解,且有且仅有一

给定线性空间Rn,则A的行向量张成它的子空间,记为U,记U的维数为s.赋予标准内积,使Rn化为欧氏空间,题目等价于证明存在唯一的u∈U,使u与A的每一个行向量的内积都等于对应的b的元素.首先,由于标准

设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m

证明:必要性:因为AX=Em有解所以Em的列向量组可由A的列向量组线性表示所以m=r(Em)=Em的列秩=m而A只有m行,所以r(A)再问:确定对吗?再答:呵呵保证

设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆

证明:Ax=b有唯一解,那么r(A,b)=r(A)=n,而A为n阶矩阵,所以r(A)=n可以得到A可逆同理,n阶矩阵A可逆,那么r(A)=n,而增广矩阵r(A,b)显然此时等于r(A),所以r(A,b

设A,B是n阶矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r([A,B])

将X={x1...},B={b1.}都看成列向量组.则方程化为方程组Ax=b.可知向量b与A线性相关,因此r(A)=r([A,B]).反之.r(A)=r([A,B]).可说明B的列向量b1.都可由A的

如何证明:若a+b+c=0,则方程必有两个不等的实数根?

方程有一个根为1,若为两相等实根则c/a=1*1=1b/a=-(1+1)=-2a=1,b=-2,c=1方程有两个相等的实根结论不成立

刘老师您好 关于非齐次线性方程组AX=b有唯一解的充分必要条件是

应该是A可逆或|A|≠0是非齐次线性方程组AX=b有唯一解的充分必要条件.