证明数列x1=a>0,xn 1=1 2(xn a xn)极限存在,并求此极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:50:06
1.你写的①②根本不是命题,何来“证明”一说?既然是证明,你把“已知条件”、“求证”写清楚好不好?2. 请把下标写清楚, 你这样写,鬼知道 你要写
(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)Xn+1=1/2(Xn+a/Xn)=(Xn^2+a)/2Xn》2Xn√a/2Xn=√a故Xn》√an》2数列有下界又:X3
1.lim(x→∞)xn=a,对ε>0,存在N1,当n>N1时有:|xn-a|N2时,有:(|x1-a|+|x2-a|+...+|xN1-a|)/n
令X==(a+Xn)^1/2N趋向无穷则:X^2=a+XX^2-X-a=0a>=0方程一定有非负实数解所以Xn极限存在解出一个非负数解就可以了再问:弱弱地问下==我今年大一刚学高数这是要求用什么单调有
记a的算术平方根为Q(抱歉我还只有一级不能插图片,连个公式也插不了)1.当X1>Q时,证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q(y=x+
证明:∵X1>0,Xn+1=(1/2)(Xn+a/Xn)(n=1,2...,a>0)==>Xn>0(n=1,2...,)(应用数学归纳法证明)==>Xn+1=(1/2)(Xn+a/Xn)≥(1/2)(
Xn-1=(X(n-1)-1)/4;所以数列{Xn-1}为公比是1/4的等比数列,首项为0-1=-1Xn-1=-(1/4)^(n-1);Xn=1-(1/4)^(n-1);显然收敛于1.
F(x)=f(x)-x*[f(x1)-f(x2)]/(x1-x2)F(x1)=f(x1)-x1f(x1)/(x1-x2)+x1f(x2)/(x1-x2)=[x1f(x2)-x2f(x1)]/(x1-x
很复杂,关键是证明这个数列是单调增的,因为这个数列有上界是显然的.那么怎么证明这个数列单调增呢将后一项与前一项作差.只要这个差值大于0就可以了.现在关键是证明xn^2-xn<1.为了得出这个式子
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基
有界:Xn+1=1/2(xn+2/xn)>=1/2*2*根号(Xn*2/Xn)=根号2n=1,2,3.单调:Xn+1-Xn=-1/2(Xn-2/Xn)当n>=2时,Xn>=根号2,所以Xn+1-Xn
limyn=A,==>lim[1/yn)=1/AlimSn/n=1/A,所以对任意给定ε>0,存在N,使n>N时,-ε再问:下面是什么啊?再答:不好意思,还没想出,我再想想。再问:一定要帮我啊!我脑袋
x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号即xn是大于等于1的数2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn=(1-Xn^2)/Xn
这种题目的做法是一样的a)证明数列单调增(或者减)b)证明数列有上界(或者下界)归纳法的关键是找到上界或者下界,做的方法是对迭代式两边同时求极限,如1)同时求极限得到x=1/2(x+a/x),这样求得
x0>0,所以Xn>0,所以Xn+1=1/2(Xn+a/Xn)>=1/2(2√(Xn*a/Xn))=√a即Xn有下界,且Xn^2>=a又Xn+1-Xn=1/2(a/Xn-Xn)=1/2(a-Xn^2)
先用数学归纳法证明,对任何x∈Z+,有0
强烈要求加分.这个就是差分方程,关于他的解都有定论Xn+1-根号a=1/2(根号Xn-根号(a/Xn))^2Xn+1+根号a=1/2(根号Xn+根号(a/Xn))^2(Xn+1-根号a)/(Xn+1+