证明子数列收敛数列收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:29:42
注意-1<(1-√3)/(1+√3)<0,当n→∞时,[(1-√3)/(1+√3)]^n=0.再问:我想复杂了,一直在算An+1/Bn+1与An/Bn的关系,真的太2了···
证明不了:反例:An=1,当n为偶数;0,当n为奇数这个数列的子列A2k和A2k+2都是常数列,很明显都收敛于1,但是该数列显然不收敛.
设数列{an}的子列{a(kn)}(n为k的下标)收敛于a,则对任意的s>0,存在N,使得对任意m>n>N,有|a(kn)-a|N+1)时|an-a|
首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
打字没法儿排版,看图片吧!因为有下标,会显示较小,建议点击放大!【经济数学团队为你解答!】再问:谢谢您再答:如果满意,请采纳,谢谢!
聚点定理:任意有界无穷数集至少有一个聚点.对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理
证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始
这个数列的无限子数列也收敛,而且收敛到母数列的极限值,证明很简单.比如数列a1,a2,a3...an...收敛到A,它的子数列无非就是在这个数列中抽值,比如子数列是a2,a6,a11...am...,
任意选一子列,对其构造闭区间套子列中最大值设为M,最小值设为m,从子列第一个数开始看,若这个数是M或m则构造值域中的子区间,使子列范围缩小到次大值或次小值若不是M或m则不需构造这样下去,可以构造出一个
比如an=1-1/n(当n是奇数)an=2-1/n(当n是偶数)显然数列{an}不收敛但如果令bn=a(2n)那么{bn}就是{an}的一个子列,且{bn}收敛于2于是{bn}就是{an}的一个收敛子
单调性用作差开证明,很明显是单增的,所以要找上界,上界可以适当放缩来找,把分母变小就可以,把分母里头的123…去掉,写成公比二分之一的等比数列求和,写出来很容易的看出上界是1,单调有界数列必收敛得证.
证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e
“简单”证明是不太可能了,建议你自己看一下数学分析,严格的推导我就不说了,给你个大体思想.首先设c
设数列{a[n]}收敛于a,由定义知存在正整数M,使得当n>M时|a[n]-a|
楼上说有问题.数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|
数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|
用定义归并性定理的内容显然,它自己就是它的一个子列,所以收敛
证明=>{an}收敛于a=>对任意ε>0,存在N>0,对任意n>N时,有|an-a|N时有2n-1>n,所以对任意ε>0,存在N,对任意n>N,|a(2n-1)-a|N时有2n>n,所以对任意ε>0,
不妨设Xn为单增数列,设{Xk}为{Xn}的收敛子列,且{Xk}极限为a,则a为{Xk}的上界下证a为{Xn}的上界任取Xn0,存在Xk0,使Xk0在数列{Xk}中,且k0>n0由于a为{Xk}的上界