证明四边形对角线垂直的定理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:10:20
不矛盾.P且Q的真假是两个单独名题在且的法则下判断,而不是把PQ两个命题组合成一个整体来判断.故P且Q假.
证明:设该四边形为ABCD,AC与BD为互相垂直的对角线,且AC与BD的交点为O.因为AC*BD=(AO+CO)BD=AO*BD+CO*BD=2*[(AO*BD)/2+(CO*BD)/2]又因为三角形
1.∵四边形的对角线垂直且相等∴四边形为正方形又连接四边中点∴连接的四边形四边相等(中位线定理,对角线相等)又对角线互相垂直∴连接的四边形一角为90度∴此四边形为正方形2.不知是题错了还是我不会知道了
证明步骤如下:1.做体对角线关于该面对角线所在面的摄影2.发现其摄影即使另一条面对角线3.而正方形的面对角线互相垂直4.利用摄影定理即可证明呵呵,以前高中的知识那,不知道,记对了没有,呵呵^_^希望能
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
已知:平行四边形ABCD对角线AC⊥BD求证:ABCD是菱形证明:设AC和BD的交点为O,则在△ABO和△BOC中∵AO=CO,BO=BO,∠AOB=∠COB=90°∴△AOB≌△COB∴AB=BC同
设四顶点对应向量a,b,c,d.对角线垂直(a-c)*(b-d)=0(*表示点积)a*b+c*d=b*c+d*a(a-b)*(a-b)+(c-d)*(c-d)=(b-c)*(b-c)+(d-a)*(d
对角线相等则大四边形为平行四边形.连它的两对角线把大四边形分成两个全等的三角形,因为都是中点所以小四边形每边都是对应三角形的中位线,这样易证小四边形是平行四边形,又对角线相等,AC=BD,所以1/2A
可以!用对角线垂直平分求出四边形内部的四个三角形全等,则四边连等,所以那个四边形是菱形.并且正方形就是菱形,因为把菱形旋转45度所得到的图形就是正方形
http://baike.baidu.com/view/148250.htm?fr=ala0_1_1百度百科有的
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
1、已知四边形ABCD中,AD=BC,AB=CD,求证:ABCD是平行四边形.证明:连接AC,∵AD=BC,AB=CD,AC=CA,∴ΔABC≌ΔCDA,∴∠ACB=∠DAC,∠BAC=∠DCA,∴A
勾股定理知,被划分的四个三角形斜边相等,证毕
是菱形,其中正方形是特殊的菱形所以选B
D.菱形、正方形
第一个:矩形对角线相互平分一条对角线和两条矩形组成的三角形的高(另一条对角线的一半)是这个三角形的高、中线(等腰三角形才有的特点)固三角形两边相等下面的就不说了自己改知道了.第二个:第二个不是梯形就可
还得平分才行呀,
已知:如图四边形ABCD,对角线AC、BD相交于点O,且OA=OC,OB=OD求证:四边形ABCD是平行四边形证明:在△AOD和△COB中,OA=OC∠AOD=∠COBOD=OB,∴△AOD≌△COB
已知:四边形ABCD是菱形,对角线AC,BD相交于点O求证:AC⊥BD证明:∵ABCD是菱形∴AO=CO(平行四边形对角线互相平分)∵AB=BC∴AC⊥BD(等腰三角形三线合一)
因为体对角线所在平面垂直于底面且其相交线是一条底面对角线,而底面是正方形,故两对角线垂直,所以底面的对角线垂直于体对角线所在平面,所以就垂直于体对角线