证明伴随矩阵的乘法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:51:33
这个用定义应该可以证明,不过涉及求和负号的拆解,过程很繁杂,没什么技术含量,就是要细心.这个性质直接拿来用就可以了,要注意分块的行数列数要对应
哎--换一下想法不就可以了吗因为|B|B^-1=B*所以当B=A^-1得时候就有|A^-1|(A^-1)^-1=(A^-1)*=|A^-1|A=(A^-1)*不明白的话继续问我就可以了
A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等
这个简单,正定阵的充要条件是特征值全是正数,我们有一个定理是可逆矩阵A的特征值是a,则A*的特征值一定是是|A|/a.这说明A*的正定性与A正定性有一定关系因此若能证明A是正定的则A*一定是正定的,若
分块矩阵的乘法规则是定义的,只要满足分块的要求(左乘矩阵的列数等于右乘矩阵的行数),按一般矩阵的乘法相乘就行了再问:可是结果和不分块时一样,至于为什么书上就没有证明过程,网上也找不到再答:这证明太麻烦
第一题有点问题因为矩阵乘法AB有意义,则A的列数n必须等于B的行数m第二题因为A×A*=|A|E所以(kA)×(kA)*=|kA|E=k^n|A|E=k^n×A×A*=kA×k^(n-1)A*=(kA
证明:r(A)=n,则|A|≠0AA*=|A|E则R(A*)=n当|A|=0,即R(A)
设A是N阶可逆矩阵,A*=|A|A-1,所以A**=(|A|A-1)*=|A|N-1A/|A|=|A|N-2A也就是A的行列式的N-2次方倍的A
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
这个我会叻特征值有一个性质:n阶矩阵A与他的转置矩阵A(T)有相同的特征值.证明如下:因为A的伴随矩阵正定,所以特征值严格大于零.所以A的特征值大于零.所以A正定
原来的证明方法不好,可以这样证明:AA*=|A|E,两边同时取行列式,|A|*|A*|=|A|的n次方,所以|A*|=|A|的n-1次方
定理:r(A)=rA存在非零的r阶子式,且所有r+1阶子式全为0如果A有n-1阶子式不等于0,则A的秩至少是n-1.再问:知道了.那么,为何(3)步骤,r(A)
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
这一句话就证明了:因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0其实有一个结论:对于一个n阶方阵.
证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1
这的小公式的确很多,要学精