证明任意自然数 n,有an^2 bn c是素数是假命题 (a,b,c是正整数)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:51:47
an-a(n-1)=2n-1a(n-1)-a(n-2)=2(n-1)-1……a2-a1=2*2-1相加an-a1=2*[2+3+……+n]-1*(n-1)=2*(n+2)(n-1)/2-n=n&sup
a2=a1+1=1+1a3=a2+2=1+1+2a4=a3+3=1+1+2+3...an=an-1+n-1=1+1+2+3+..+(n-1)=1+(n-1)n/2a100=1+100*99/2=495
在等比数列{an}中,对任意自然数n,有a1+a2+…+an=2^n-1即Sn=2^n-1所以an=Sn-Sn-1=(2^n-1)-[2^(n-1)-1]=2^(n-1)所以(an)^2=[2^(n-
an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/22an=na1+nan-na1-nan-1+a1+an-1(n-2)an=(n-1)*(an-1)-a1(1)同理(n-1)
利用已知式,有A[n+1]=3^n-2A[n]>A[n]整理,得到A[n]
要证f(n)>n/(n+1)即证1-2/(2^n+1)>1-1/(n+1)即证1/(n+1)>2/(2^n+1)即证2^n+1>2n+2即证2^n>2n+1数学归纳法:当n=3时2^3=8>7=2*3
f(n)-n/(n+1)=(n^2-1)/(n^2+1)-n/(n+1)=((n^2-1)(n+1)-n(n^2+1))/((n^2+1)(n+1))=(n^3+n^2-n-1-n^3-n)/((n^
由于:5^[an],5^[bn],5^[a(n+1)]成等比数列则有:{5^[bn]}^2=5^[an]*5^[a(n+1)]5^[bn^2]=5^[an+a(n+1)]则:2bn=an+a(n+1)
∵an=an-1+1/n(n+1)∴an-an-1=1/n-1/(n+1)an-1-an-2=1/(n-1)-1/n………a2-a1=1-1/2上述各式相加得:an-a1=1-1/(n+1)=n/(n
a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)
证明:原式=(n+1)(n+2)(n+3)(n+4)+1=(n+1))(n+4)(n+2)(n+3)+1=(n^2+5n+4)(n^2+5n+6)+1设n^2+5n=t,t式自然数∴原式=(t+4)(
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)
(1)∵对任意正整数n,有b1a1+b2a2+b3a3+┅+bnan=2n+1,①∴当n≥2时,b1a1+b2a2+b3a3+┅+bn−1an−1=2n-1,②…(4分)①-②得 bnan=
证明:假设n+1个自然数是A1,A2,...An+1这些数除以n的余数分别是R1,R2,.Rn+1那么这些余数必然是0到n-1中的数,所以由抽屉原理可知必然存在两个余数是相等的.那么也就是在n+1个自
A=1/2(B+E)代入A^2=A有(B+E)(B+E)=2(B+E)得B²=E这样(E-B)²=E-2B+B²=2(E-B)右乘(E-B)后(E-B)³=2(
对于任意的自然数n,证明3^(n+2)-2^(n+2)+3^n-2^n有一个公约数是5.证明:3^(n+2)-2^(n+2)+3^n-2^n=[3^(n+2)+3^n]-[2^(n+2)+2^n]=[
q=a(n+1)/a(n)=[(n+2)*0.9^(n+1)]/[(n+1)*0.9^n]==9(n+2)/10(n+1),当n1,a(n+1)>a(n);当n=8时,9(n+2)/10(n+1)=1
第二问应该是bn=R^n/(a1a2a3……an)?(1)2R/(an-an+1)=n(n+1),an+1-an=-2R/n(n+1)=-2R[1/n-1/(n+1)],得到:a2-a1=-2R(1-