证明任意方阵可以写成对称矩阵与反称矩阵的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:07:09
求此矩阵的特征多项式|A-λE|比较麻烦.2-λ1/n1/n1/n……1/n1/n4-λ1/n1/n……1/n.1/n1/n1/n1/n……2n-λ先说明特征值不等于2k-1/n,k=1,2,...,
唯一性:若有两种形式即A=B+CB对称C反对称A=F+GF对称G反对称所以有A'代表A转置A'=B'+C'=B-CA'=F'+G'=F-G由上有F+G=B+CF-G=B-C两式相加有2F=2B,F=B
设矩阵A的迹tr(A)=a那么A=aE+(A-aE)即满足题意
为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)再问:看不懂再答:哪里看不懂再问:B=(A+A‘’
证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
那还不好办?A=(A+A')/2+(A-A')/2A'是A的转置.(A+A')/2是对称的(A-A')/2是反对称的
对任意的n阶方阵A,令B=(A+A')/2,C=(A-A')/2,则容易验证A=B+C并且B是对称的(B'=B),C是反对称的(C'=-C).这里X'表示X的转置.
题:证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.证:以下A‘表示方阵A的转置.设方阵A=N+Z,其中N为对称矩阵,Z为反对称矩阵,即:N'=N,Z'=-Z
不妨设B为可逆矩阵则由于AB=BA所以对于任意可逆阵B都有B-1AB=A即A的任意线性变换仍是A自己这样的矩阵只能是KI
证:设A=(aij)与任意的n阶矩阵可交换,则A必是n阶方阵.设Eij是第i行第j列位置为1,其余都是0的n阶方阵.则EijA=AEijEijA是第i行为aj1,aj2,...,ajn,其余行都是0的
证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕
考虑(A+B)/2与(A-B)/2,其中B是A的转置前一个就是对称矩阵,后一个是反对称矩阵.加起来是A你做做看
明天做好了给你答案.
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
若AT=A,则称A为对称矩阵根据矩阵转置的运算规律:(AT)T=A,(AB)T=BT*AT,(A+B)T=AT+BT(1).(A+AT)T=AT+(AT)T=AT+A=A+AT,所以A+AT为对称矩阵
对于(A)T必存在初等矩阵P1,P2……Ps使P1P2……Ps(A)T变为阶梯型,Pi中不含E(i(k))a1……a2…………an令P=P1P2……Ps,且P必定可逆a1*a2*……an为行列式A的值
A=(A+A^T)/2+(A-A^T)/2