证明三角形重心 AG BG CG=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:34:16
你的“已知G为三角形ABC内一点,三角形GBC、三角形GAC、三角形GAB的面积相等”能证明G点为三角形的角平分线的交点.与题目无关对于你要证明的“三角形顶点到重心的距离,等于重心到对边中点的距离的2
设:△ABC,重心为G,作CD‖BG,BD‖CG,GD,BC相交于O,则BDCG为平行四边形,BO=CO,GO=DO,向量GB+向量GC=向量GD=2向量GO又∵向量GB+向量GC=-向量GA(∵G为
1)重心是三角形三条中线的交点;2)重心到三角形顶点的距离等于它到对边中点距离的二倍.3)若三角形三个顶点坐标为(x1,y1)(x2,y2)(x3,y3),则重心坐标为[(x1+x2+x3)/3,(y
向量BO与向量BF共线,故可设BO=xBF,根据三角形加法法则:向量AO=AB+BO=a+xBF=a+x(AF-AB)=a+x(b/2-a)=(1-x)a+(x/2)b.向量CO与向量CD共线,故可设
三角形ABC,AD是BC边上的中线,取重心O,倍长OD,使DE=OD,连接BD,CD,BO,CO,则BDCO为平行四边形.同样,BH是AC中线,倍长OH,得平行四边形AHCO,则有HC=AO=OE.则
要用到解析几何的定比分点公式和中位线定理,具体如下设A(x1,y1),B(x2,y2),C(x3,y3),则AB中点D为((x1+x2)/2,(y1+y2)/2),重心O分有向线段CD的比例为2,由定
三角形中心定理:http://baike.baidu.com/link?url=lxmciTjBn01dCViZ2jWXhNbf1zEBHRRf9MksbkKMx7uEagKjH03r7-2ho9Ux
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G
设BD:DC=CE:EA=AF:FB=γ根据矢量加法有矢量BD+矢量CE+矢量AF=(γ/(1+γ))(矢量BC+矢量CA+矢量AB)=(γ/(1+γ))*0=0设O为△ABC的重心,有矢量OA+矢量
取点D使得OBDC是平行四边形OB+OC=OD再证明A、O、D三点共线而且OA=OD不懂再问我
这是我整理的一些内容,希望对你有所帮助:【一些结论】:以下皆是向量1若P是△ABC的重心PA+PB+PC=02若P是△ABC的垂心PA•PB=PB•PC=PA•PC
证明:连结AO并延长,交BC于E,连结DE因为CD是AB边上的中线,点O是三角形ABC的重心所以AE是BC边上的中线所以AD=DB,CE=EB所以DE是三角形ABC的中位线所以ED‖AC,ED=1/2
网上有详细的答案http://jylicai.com/netteach/cw04-05/ja/g354sxb516aa09.doc【典型例题精讲】例2
定理:三角形重心与顶点的距离等于它与对边中点的距离的两倍.如图:△ABC的中线AD、BE交于G(重心),求证:AG=2GD证明:取CE的中点F,连接DF, 则 CE=2EF=AE,
如图:O是重心,首先要说明的一点是,1、三角形的面积=边和边到顶点距离乘积的1/22、重点是三角形各边中线的交点3、由于O点是三角形1和2的共同顶点,所以O点到AB间的高应该是三角形1和2的AF和BF
设:AB的中点为D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3[x-(x1+x2)/2]===>x=(x1+x2+x3)/3同理:y=(y1+y2+
作BD‖OC,CD‖OB,连结OD,OD与BC相交于G,则BG=CG(平行四边形对角线互相平分)∴向量OB+向量OC=向量OD,又∵向量OB+向量OC=-向量OA,∴向量OD=-向量OA∴A,O,G在
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
构造平行四边形OBDC向下你应该能想出起了