证明lim(x趋于正无穷)sin1 x极限不存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:23:26
硬往洛必达上凑,lnx-3x=ln(x/e^3x)x/e^3x用洛必达得lim1/(3e^3x)=0+(正无穷小)于是答案为负无穷
结论是错误的吧X趋于1的话极限是0因为y=lnx是连续函数所以定义域内每一点的极限都等于其函数值所以Lim(x趋于1)lnx的极限是0Lim(x趋于e)lnx的极限才是1
取数列xn=2nπ,n=1,2,……当n→∞时,xn→+∞.f(xn)=1→1;再取数列x'n=2nπ+π/2,n=1,2,……当n→∞时,xn→+∞.f(x'n)=0→0由归结原则,limcosx当
证对任意正数ε,存在正数M1,当x>M1时,有│f(x)-A│
不放心的话,给分子添个负号好了,然后极限式外面再添个负号.
1\图象法2、求导.有没有具体的式子?/主要还是数形结合
先考虑a=b=0的情形(其实一般情形只需要将下面的证明过程稍微改写一下即可).此时an,bn都是有界数列,设常数M满序|an|N1时,有|an|
(x^3+3x^2)^(1\3)-(x^4-2x^3)^(1\4)=x[(1+3\x)^(1\3)-(1-2\x)^(1\4)]1\x→0在0处泰勒公式有(1+x)^(1\m)=1+x\m+o(x)∴
设为A(以下求极限符号省略)lnA=ln(pi/2-arctanx)/lnx用L'Hospital:=[1/(pi/2-arctanx)*(-1/(x^2+1))]/(1/x)=-x/[(pi/2-a
lim[sin(1/x)+cos(1/x)]^x(x趋于正无穷)令t=1/x,当x->正无穷,有:t->0则:lim(x->正无穷)[sin(1/x)+cos(1/x)]^x=lim(sint+cos
若a=0,结论不言而喻,所以只讨论a≠0.【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]
无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'
谁说要加1?你的老师吗?那他太糟糕了,他一窍不通!他是在依样画葫芦,乱画一通.如果是N→∞,1/ε可能是分数,[1/ε]取整后分数部分舍去了,就自然而然加1.本题是x→∞,1/ε是整数还是分数,都没有
分子分母同除以x,放入根号下约简,得求极限的式子=三次根号下(8+6/x^2)/根号下(9-1/x^2),取极限得,原式=三次根号下8/根号下9=2/3.
不一定举例说明:设f(x)=1+(1/x),满足当x趋于正无穷时,limf(x)=1,且在(0,正无穷)上连续,但是在x=0点函数无界.因为当x趋于0+时,limf(x)=正无穷,所以函数无界.说明:
为了求极限方便,不妨设x>e^e,利用罗比达法则lim(-->+∞)(lnx)^(1/x)=lim(-->+∞)e^[(lnlnx)/x]=e^[lim(-->+∞)(lnlnx)/x]利用罗比达法则
你看这样行不行啊,要用到级数的知识.在-10+)p(t)=lim(t->0)(1+t)^(1/t)=e所以lim(x->+∞)(1/x+1)^x=e至于lim(x->-∞)(1/x+1)^x=e可以求
f(x)=cosxg(x)=1/x∫[a,2a]f(x)g(x)dx=g(a)∫[a,ξ]f(x)dx+g(b)∫[ξ,b]f(x)dxξ∈[a,2a]第二积分中值定理=(sinξ-sina)/a+(