证明f(x,y)在(0,0)点出连续偏导存在但是不可微分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:05:44
极限存在的条件是(x,y)以任何方式靠近(0,0)极限都相等所以证明极限不存在就是找两种不同的方式,使得极限不相等证明如下:取x=y,f(x,y)=x^2/2x=x/2显然极限=0/2=0又取x=-y
(1)f'(x)=-1/(x^2+x)x>0时f'(x)=-1/(x^2+x)
令X=0,所以有f(0+y)=f(0)*f(y)所以f(0)=1令x与y互为相反数,x>0,则y1,所以f(y)1,且大于f(x),f(y)x
证明f(x)在R上连续,即要证明对于任意x0,极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)又因为f(x+y)=f(x
f(x+y)=f(x)+f(y)取x=y=0,得f(0)而f(x)在x=0处连续,故lim(h->0)f(h)=f(0)=0故对任意的x,有lim(h->0)f(x+h)=lim(h->0)(f(x)
设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).⑴、证明:将L:x=my-1带入y?x并整理得y?my+4=0,从而y1+y2=4m,y1y2=4.直线BD
证.设M(x,y)是y=F(x)上的任意一点,则M点关于点(a/2,0)的对称点为M'(a-x,-y),则有y=F(x)=f(x)-f(a-x)F(a-x)=f(a-x)-f[a-(a-x)]=f(a
当x=0时,上式为:f(y)+f(-y)=2f(0)f(y)——a当y=0时,上式为:f(x)+f(x)=2f(x)f(0)——b将a式写成关于x的函数为:f(x)+f(-x)=2f(x)f(0)——
当x趋向于0+的时候,此时取绝对值,得到y=1当x趋向0-的时候,去绝对值得到y=-1所以当x趋向0的时候,从两个方向趋向0得到的极限不一样,所以极限不存在
显然,f(0,0)=0.|f(x,y)-f(0,0)-0|=o(||(x,y)||),所以f在(0,0)可微,微分为0.
首先证明:对任意整数n与实数x,有f(nx)=nf(x).对n用数学归纳法.在条件中代入x=y=0可得f(0)=0,即n=0时结论成立.假设n=k时结论成立,取y=kx,由条件得:f((k+1)x)=
偏导存在,只需要正常求导就可以了,比如对x求导,由于y=0,故x趋近于0时,值仍为0.y的偏导也一样.在(0,0)不可微,意思是以任意方式趋近于(0,0),值不全一样.比如以x=y的形式,去接近(0,
再问:要求用那个全增量减去全微分然后求得那个高级无穷小然后用高级无穷小与p对比看连续性那个方法再答:那是证明可微性,不是连续性……再问:可微就连续啊再问:用那个方法证明再答:对,可微就连续,但不可微不
证明啥?啊1111111111111111再问:问题补充:证明f(x)的二阶导数有界再答:证明不了的,举个例子,x^4的2阶导数是12x^2,在0处连续,但是无界
令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1
因为f(1*1)=f(1)+f(1)所以f(1)=0又f(y)*f(1/y)=f(y)+(f1/y)=f(1)=0所以-f(y)=f(1/y)所以f(x/y)=f(x)+f(1/y)=f(x)-f(y
二元函数可微的定义是函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示成Δz=AΔx+BΔy+o(ρ).令x=y=0,则全增量Δz=f(Δx,Δy)-f(0
∵f(x)=ax-b/x,∴f′(x)=a+b/x^2,∴过点(2,f(2))的切线的斜率=a+b/4,∴a+b/4=7/4,∴a=7/4-b/4.······①∵曲线f(x)=ax-b/x上的点(2