证明F(x,y)>=1-[1-FX(x)][1-FY(y)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:47:40
证明F(x,y)>=1-[1-FX(x)][1-FY(y)]
离散数学集合论,证明:f是映射,设f:X->Y,f是单射当且仅当任意F属于2^X,f-1(f(F))=F

若f是单射,记Y*=f(X),f是X->Y*的双射,结论成立.若f不是单射,存在x1,x2∈X.y0∈Y,y0=f(x1)=f(x2).则x1,x2∈f-1({y0})令A={x1}∈2^X,f-1(

设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,Ⅰ证明F(X

(1)令x=y=0,代入f(x+y)=f(x)+f(y),f(0)=0,再令x=-y,代入f(x+y)=f(x)+f(y),得f(0)=f(x)+f(-x),所以是奇函数.(2)因为x>0,f(x)<

证明函数y=f(x)=x/(1+x^2)在(-1,1)上是增函数

y=f(x)=x/(1+x^2)=1/[(1/x)+x]令u=1/x+x根据鱼钩函数性质可知u在(-1,0)和(0,1)都是减函数所以y=1/u在(-1,1)是增函数即f(x)在(-1,1)上是增函数

已知函数f(x)=ln(1 x)/x (1)证明y=f(x)在(0,∞)

(1)f'(x)=-1/(x^2+x)x>0时f'(x)=-1/(x^2+x)

f(x)是定义在上的函数,对于任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时f(x)>1,证明f(x)

令X=0,所以有f(0+y)=f(0)*f(y)所以f(0)=1令x与y互为相反数,x>0,则y1,所以f(y)1,且大于f(x),f(y)x

若函数y﹦f(x)对任何x,y∈R,恒有f(x+y)=f(x)+(y).(1)指出y=f(x)的奇偶性,并给予证明;

(1)证明:令x=y=0得f(0)=2f(0)得到f(0)=0再令y=-x,有f(0)=f(x)+f(-x)=0奇函数(2)令x1=x+y,x2=x,且y>0则有x1>x2,x1-x2=y>0,f(x

f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)

证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)

函数证明题已知对于任意正实数x,y函数y=f(x)有f(xy)=f(x)×f(y),且x大于1时,f(x)大于1,f(2

(1),在f(xy)=f(x)×f(y)中,令x=y=1,则:f(1)=f(1)×f(1),所以f(1)=0,或f(1)=1;在f(xy)=f(x)×f(y)中,令x=1,y=2,则:f(2)=f(1

证明函数的奇偶性若f(x-y)=[f(x)-f(y)+1]/[f(y)-f(x)],判断函数的奇偶性?急!写出证明过程。

令x=y,y=x,那么f(x-y)=f(y-x)=f[-(x-y)]=[f(y)-f(x)+1]÷[f(x)-f(y)]然后,通过对比可以看出f(x-y)不等于f[-(x-y)]所以,原函数是非奇非偶

已知函数f(x)是定义在(0,正无穷)的增函数,且f(xy)=f(x)+f(y),1、证明f(x/y)=f(x)-f(y

1当x=y=1时,f(1)=f(1)+f(1),则f(1)=0;∴当y=1/x时,有f(1)=f(x)+f(1/x)=0;∴f(1/x)=-f(x)令y=1/t,则f(xy)=f(x/t)=f(x)+

证明f(x)=1-x^2/cosx,证明f(-x)=f(x)

f(-x)=1-(-x)^2/cos(-x)=1-x^2/cosx=f(x)所以得证

函数f(x)对任意x.y属于R都有f(x+y)=f(x)+(y),并且当x>0时f(x)>1 (1) 证明函数f(x)在

设y=-x,证明此函数是奇函数,又因为f(x)>f(1),又因为f(0)不等于0,所以即可证明此函数在R上是增函数了.

设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1

令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1

已知x∈(0,+∞),f(xy)=f(x)·f(y),当x>1时,f(x)>1,证明f(x)>0

取x∈(0,1),那么1/x∈(1,+∞)又f(1/x)=f(1)f(1/x),那么f(1)=1而f(1)=f(x)f(1/x)则f(x)=1/f(1/x)∈(0,1)综上可得x∈(0,+∞)时,f(

已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+2,当x>0,f(x)>2,(1)证明f(X)为增

令x=y=0,得f(0)=2f(x+y)=f(x)+f(y)-2令Y=-X,有f(x)+f(-X)=4设X1>X2,f(x1)—f(x2)=f(x1)+f(-X2)—4=f(X1-X2)-2>0,所以

定义F(x,y)=(1+x)^y,x、y∈(0,+∞) 当x,y∈N*,且x〈y时,证明:F(x,y)〉F(y,x)

给你点提示:只需要证明(1+x)^y>(1+y)^x取对数yIn(1+x)>xIn(1+y)In(1+x)/x>In(1+y)/y只需要证明f(x)=In(1+x)/x在[1,+∞]是减函数单调性的证

若函数y=f(x)对任意x,y∈R恒有f(x+y)=f(x)+f(y)(1)指出y=f(x)的奇偶性,并证明

1证明,首先令xy都等于0,的f(0)=0,然后另y=-x,的f(0)=f(x)+f(-x)=0,f(-x)=-f(x),所以是奇函数.2,f(x+y)-f(x)=f(y),令y>0,则f(y)x,所

讨论下列函数连续性 f(x,y)=(x-y)/(1+x^2+y^2) 要有具体的证明过程

记得好像是,分别求x,y和y,x的偏导数,如果二者相等就是连续的.

有一题,f(-1)=0 f(1)=0 ,但证明出来函数是奇函数.为什么 f(xy)=y*f(x)+x*f(y)

令x=y=1原式变为f(1)=f(1)+f(1)=2f(1)=>f(1)=0令y=-1代入f(-x)=-f(x)+xf(-1)f(-1)=0所以有f(-x)=-f(x)所以f(x)为奇函数证毕