证明c(n‚2n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:02:04
可以这样想:从两个分别装有n个球的袋子里各拿若干球,那么加在一起刚好是n个球的概率是多少?两种解法:1、复杂一点:第1个袋子0个第2个袋子n个,第1个袋子1个第2个袋子n-1个...,第1个袋子n个第
=(1+1)^n=2^n二项式定理.
C(k,n+k+1)=C(k-1,n+k)+C(k,n+k)=C(k,n+k)+[C(k-1,n+k-1)+C(k-2,n+k-1)]=C(k,n+k)+C(k-1,n+k-1)+[C(k-2,n+k
对(1+1)^n二项式展开=C(0,n)+C(1,n)+...+C(n-1,n)+C(n,n)=2^n所谓子集就是从n个元素中找出任意小于等于n个数个元素组成的集合.0元素子集个数就是从n个中找出0个
二项式展开,左=1+n*2/n+n(n+1)/2*(2n)²+.>=3+2(n+1)/n=5+2/n>5-2/nn>=3用在左边展开时,至少得到三项的合理性
1.C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(r+1,r+1)+C(r+1,r)+C(r+2,r)+.+C(n,r)=C(r+2,r+1)+C(r+2,r)+...+C(
2^n=(1+1)^n=Cn0*1^n+Cn1*1^(n-1)*1+……+Cnn*1^n=Cn0+Cn1+……+Cnn所以原式=2^n
由二项式定理,(1+x)^n=C(0,n)+xC(1,n)+(x^2)C(2,n)+……+(x^(k-1))C(k-1,n)+...+(x^n)C(n,n).两边对x从0到1积分,得∫[0,1](1+
证明:Cn^0+C(n+1)^1+C(n+2)^2+.+C(n+m-1)^m-1=C(n+1)^0+C(n+1)^1+C(n+2)^2+.+C(n+m-1)^m-1=C(n+2)^1+C(n+2)^2
用数学归纳法证明.(i)当n=1时,C(01)+C(11)=2=2^1所以等式成立.(ii)假设n=k时,(k≥1,k∈N*)时等式成立即:C(0k)+C(1k)+C(2k)+...+C(k-1k)+
这个就是二项式定理的逆用1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=1*C(n,0)+2C(n,1)+4C(n,2)+...+2^nC(n,n)=(1+2)^n=3^n明教为您解答
二项式定理(1+x)^n=C0,n+C1,n*x+C2,n*x^2+...+Cn,n*x^n令x=1则C(0,n)+C(1,n)+C(2,n)+...+C(n,n)=2^n----------1式令x
先证明对于任意x≠0,1+xf(0)=1>0,即1+x
3的(n+1)次方=3个3的n次方相加依次比较就出来了
第一个,利用(1+x)^n=Σ(i=0,n)C(n,i)*x^i,两边对x求导,得:n*(1+x)^(n-1)=Σ(i=1,n)i*C(n,i)*x^(i-1).两边同乘以x,得:n*x*(1+x)^
再问:不要用二项式定理,因为刚开始学组合还没有学到二项式,
可以根据C(r+1,n)+C(r,n)=C(r+1,n+1)证明.C(r+1,n)+C(r,n)+C(r,n)+C(r-1,n)=C(r+1,n+1)+C(r,n+1)=C(r+1,n+2)
1.C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(r+1,r+1)+C(r+1,r)+C(r+2,r)+.+C(n,r)=C(r+2,r+1)+C(r+2,r)+...+C(
首先C(i,n)的意思是:从n个物体中随机抽出i个物体的所有不同抽法.那么一方面∑C(i,n)表示从n个物体中随机抽出0个的所有不同抽法+从n个物体中随机抽出2个的所有不同抽法+……+从n个物体中随机
证由二项式定理得(1+x)^n=∑C(k,n)*x^k所以(1+x)^(2n)=[C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[C(0,n)+C(1,n)*x+...+C(n,n)