证明b1,b2,b3,b4线性相关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:11:01
证明b1,b2,b3,b4线性相关
向量a1,a2,a3,a4线性无关,b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=b4+a1,则b1,b2

(b1,b2,b3,b4)=(a1,a2,a3,a4)A矩阵A=1001110001100011这里有个结论:r(b1,b2,b3,b4)=r(A)下面计算A的秩r1-r2+r3-r400001100

设n维向量组a1a2a3a4a5线性无关,b1=a1,b2=a1+a2,b3=a1+a2+a3,b4=a1+a2+a3+

(b1,b2,b3,b4)=(a1a2a3a4)KK=1111011100110001因为|K|=1,所以K可逆所以r(b1,b2,b3,b4)=r(a1a2a3a4)=4所以b1,b2,b3,b4线

设n维向量组A1 ,A2 ,A3,A4,A5,线性无关,B1=A1+A2,B2=A2+A3,B3=A3+A4,B4=A4

证(1)设k1B1+k2B2+k3B3+k4B4+k5B5=0则k1(A1+A2)+k2(A2+A3)+k3(A3+A4)+k4(A4+A5)+k5(A5+A1)=0所以(k1+k5)A1+(k1+k

已知:a1,a2,a3线性无关,b1=a1+a2,b2=a2-a3,b3=a1+2a3 证明:向量组b1 b2 b3线性

(b1,b2,b3)=(a1+a2,a2-a3,a1+2a3)=(a1,a2,a3)KK=1011100-12因为|K|=2-1=1≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3

设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性无关

[b1,b2,b3,b4]=[1100,0110,0011,1001][a1,a2,a3,a4]求[1100,0110,0011,1001]的行列式,如果等于0,那么线性相关如果不等于0,那么线性无关

设有向量组a1.a2.a3.a4.证明向量组b1=a1+a2.b2=a2+a3.b3=a3+a4.b4=a1+a4线性相

4=b1+b3-b2(a1+a2+a3+a4-a2-a3=a1+a4)所以b1,b2,b3,b4线性相关(linearlydependent)

证明向量组B1=a1+a2,B2=a2+a3,B3=a3+a4,B4=a4+a1线性相关,其中a1,a2,a3,a4是任

B1+B2+B3+B4=2[a1+a2+a3+a4]=2B1+2B3,0=-B1+B2-B3+B4.因此,B1,B2,B3,B4线性相关.

设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.

1-b2+b3-b4=0所以,向量组b1,b2,b3,b4线性相关.

已知向量组a1 a2 a3线性无关,证明b1=a1+a2 b2=a2+a3 b3=a1+a3 证明,b1 b2 b3线性

若是线性相关的,则存在m、n,使得b1=mb2+nb3,即a1+a2=m(a2+a3)+n(a1+a3),化简下,就是(n-1)a1+(m-1)a2+(m+n)a3=0,考虑到m-1、n-1、m+n不

设向量a1 a2 a3线性无关,B1=a1+a2 B2=a2+a3 B3=a3+a1...证明B1.B2.B3线性无关

证明:设k1(a1+a2)+k2(a2+a3)+k3(a3+a1)=0则(k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0由已知a1,a2,a3线性无关.所以有k1+k3=0k1+k2=0

设向量组b1=a1 b2=a1-a2 b3=a1-a2-a3 b4=a1-a2-a3-a4 且向量组a1a2a3a4线性

(b1,b2,b3,b4)=r(a1,a1-a2,a1-a2-a3,a1-a2-a3-a4)=r(a1,-a2,-a2-a3,-a2-a3-a4)=r(a1,a2,a3,a4)=4,所以b1,b2,b

设向量组a1,a2,a3 线性无关,又向量组b1=a1 ,b2=a1+a2,b3=a1+a2+a3,证明b1,b2,b3

证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b

设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1.证明:b1,b2,b3,b4线性相关

因为b1-b2+b3-b4=0所以b1,b2,b3,b4线性相关.

证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B

线性相关题目 设b1=a1 +2a2,b2=a2+2a3,b3=a3+2a1,b4=a1+a2+a3,证明向量组b1,b

因为b4=1/3*b1+1/3*b2+1/3*b3,所以b4能用b1、b2、b3线性表出,因此,b1、b2、b3、b4线性相关.

设b1=a1+2a2 ,b2=a2+2a3 ,b3=a3+2a1 ,b4=a1+a2+a3 ,证明向量组b1,b2,b3

线性相关即b1,b2,b3,b4中至少有一个向量可以由其他向量线性表示.以b4为例,即b4=A*b1+B*b2+C*b3,A,B,C可取任意实数.而本题,据观察,b1+b2+b3=3*(a1+a2+a