证明a的根号n次方的极限是1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:07:30
注意到,对于k=1,2,……,N-1,都有(N-1-k)(k-1)>=0整理得k(N-k)>=N-1上式分别取k=1,2,……,N-1.然后相乘,得(N-1)!*(N-1)!>=(N-1)^(N-1)
x>0,x开n次方的极限是1(n趋于无穷)x>0,x开n次方的极限=x^(1/n)的极限(n→∞)=x^0=1
百度文库里面有一篇关于用极限定义证明的题目 第一页就有你要的答案要学会利用资源 多百度一下
令函数f(x)=x/a^x,当x→+∞时,x和a^x都趋近于+∞,所以是∞/∞型,可以使用洛必达法则,即有:limf(x)=limx/a^x=lim1/(a^x*lna)=1/∞=0(x→+∞)而n/
设An=n^(1/n)=1+Hnn=(1+Hn)^n>n(n-1)*(Hn)^2/2由上面的式子可知0
lim(1+(-1)^n)/n因为1+(-1)^n明显为有界量1/n趋于0,为无穷小量有界量乘以无穷小量为无穷小量故,极限为0当然,也是可以用定义来求的考虑|(1+(-1)^n)/n|0,取N=2/ε
lim(e^(1/n))=lim(e^(1/∞))=lim(e^0)=1
n次根号下a可以写成a的n分之一次方,n无限大时,n分之1无限趋近于0,n次根号下a就约等于a的0次方,任何数(0除外)的0次方都等于1,所以当n趋近与无穷大时n次根号下a的极限是1
你可以假设1+a>n的根号n次方根.然后同为正数,等价于(1+a)n次方大于n.建立方程f(x)=(1+a)x次方,g(x)=x,因为x=0时,f(x)>g(x),然后求导数,x乘以(1+a)(x-1
对于任何q>1,n->+∞时,n/(q^n)=0;这个的意思是n->+∞时,指数函数比一次函数增长得要快,这是经常要用到的一个性质.打字很麻烦,关于这个的证明能不能麻烦你自己找一下,应该很容易找到.然
为方便书写,以下lim的下面省略n→∞lim(1+2/n)^n=lim[1+1/(n/2)]^n=lim[1+1/(n/2)]^[(n/2)×2]={lim[1+1/(n/2)]^[(n/2)]}^2
首先,a肯定不为0,这里有几种情况,如果.-1
记n^(1/n)=1+a(n),则n=(1+a(n))^n>n(n-1)/2*(a(n))^2,所以0N时|n^(1/n)-1|=a(n)
显然n>1时,n^(1/n)>1设n^(1/n)=1+an,则an>0,(n>1)|n^(1/n)-1|=ann=(1+an)^n右边用二项式定理展开得n=1+nan+n(n-1)/2*an^2+..
ab之间大的那个
楼上还少一步.|√x-√a|=|x-a|/(|√x+√a|)<ε/(|√x+√a|)≤ε/√a
题目错了,不是根号a的n次方,应该是a开n次方.证明:由于a>1,则1
X1>a^(1\2)假设Xk>a^(1\2)则X(k+1)>a^(1\2)∴Xn>a^(1\2)又得X(n+1)