证明ATA=O,A=O

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:05:38
证明ATA=O,A=O
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

ab是圆o的直径,ap是圆o的切线,a是切点,bp与圆o相交于点c,若ab=2,角p=30度,证明cd与圆o相切.

你的证明是错误的!△OCD与△OAD全等就不够条件,根据你作的辅助线,过点O作CD的垂线,这个垂足是否是C点,这是要证明的,通常这样的证明比较麻烦.比较好理解的证明是:连结OC、AC∵AB是直径∴∠A

证明:对任意实矩阵A,有r(ATA)=r(AAT)=r(A)

如果你知道奇异值分解,那么结论显然.如果不知道就这样做:若r(A)=k,那么可以用Gauss消去法把A消成梯阵,即CA=U,其中C是行初等变换的乘积,U仅有前k行非零且线性无关.于是CAA^TC^T=

一道线性代数题:设a是n维向量,ata=1,证明E-aat是对称幂等矩阵,且不可逆

你那t是转置吧,这里我们换个符号,用a'表示a的转置.(E-aa')=(E'-(aa')')=E-(a')'a'=E-aa'所以E-aa'是对称的而(E-aa')²=E²-2Eaa

关于方阵证明1.设A是N阶实方阵(1)如果A=AT(转置)且A^2=0,证明A=0(2)如果AAT=0或ATA=0,则A

1.⑴.A²=AA=AAT=0.AAT的(i,i)元=ai1²+ai2²+……+ain²=0aij是实数.aij²≥0.只可aij=0,A=0⑵,⑴中

设A为mxn实矩阵,证明秩(AtA)=秩(A)

只要证明方程组A'Ax=0和Ax=0同解(记A'=At)若x是Ax=0的解,则显然x也是A'Ax=0的解若x是A'Ax=0的解则x'A'Ax=x'0=0(Ax)'(Ax)=0||Ax||=0Ax的范数

再问两道高数题一,证明o(kx^n)=o(x^n)二,已知x->4a时f(x)/(x-4a)=1,x->2a时f(x)/

一、因为kx^n/(x^n)=k,此处k不等于0吧?于是它们同阶二、结论不一定,由条件知道f(2a)=f(4a)=0,f'(2a)=f'(4a)=1,当f(x)=sinx,a=Pi时,有f'(2a)=

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急

设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程

已知矩阵A为n元行向量 证明(ATA)X=O有非零解 T为角标

需要n>1的条件,n=1时除非A=0.如果学过线性代数,只要看到A^TA是秩不超过1的矩阵就行了.不过这题目即使中小学生也能做,前提是知道向量的乘法规则,只要证明AX=0有非零解.如果A只有一个分量A

A是一个mxn矩阵,列向量x是实数,证明Ax=0与ATA=0同解

方程(1):Ax=0,方程(2):ATAx=0首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):ATAx1=AT(Ax1)=AT*0=0其次证明(2)的解也是(1)的设x1是(

线性代数 R(A)=R(ATA) 如何证明?

构造两个齐次线性方程组:(1)Ax=0,(2)(ATA)x=0如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(ATA)=n-基础解系中向量个数.这个很好理解对吧,《线性代数》的基

设方阵A满足A^2 -A-2I=O,证明A为可逆矩阵,并求A^-1

A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)

线性代数第五版习题五第24题为什么Aa=aaTa=a(aTa)=(aTa)a?为什么aaT=aTa?

记住:当a=(a1,a2,.an)T列向量那么aTa是一个常数(常数当然可以随便改变位置),而aaT是一个n阶方阵.

大二线性代数习题,设A为n阶非零矩阵,且|A|=O,证明存在n阶非零矩阵B使得BA=O(O为字母)

A为n阶非零矩阵,且|A|=O,可知以A^T为系数矩阵的齐次线性方程组A^Tx=0有非零解.把若干个非零解按照列摆成的矩阵C,都满足A^TC=O.两边转置,可得C^T*A=0.取B=C^T即可

线性代数证明题27.设A是m×n实矩阵,n<m,且线性方程组Ax=b有惟一解.证明ATA是可逆矩阵.证明的是A的转置矩阵

线性方程组Ax=b有惟一解r(A)=n(A^T)A是n×n实矩阵A是列满秩r(A^TA)=r(A^T)=r(A)=nATA是可逆矩阵.

正交矩阵是否能证明对称,有一题如下 对于任意正交矩阵A,AAT=ATA=E,证明|E-A^2|=0.

很显然,题目本身是错的,你的“证明”也是错的给你一个反例0-110

设A是实对称矩阵,若A*A=O,证明:A=O

一楼是利用实对称矩阵是正规矩阵,所以可以对角化.不过这个是相似标准型的内容,开学到现在可能还没学到这部分内容吧.其实没那么麻烦.你看看A*A的对角线是什么.由于对称性,第一个对角线元素就是a11^2+