证明A B的秩小于等于A的秩 B的秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:08:42
a,b,c是绝对值小于1易得|ab|,|bc|,|ca|均小于1即(ab+1),(ac+1),(bc+1)均大于0a,b,c中若有数为零,例a=0则ab+bc+ca+1=bc+1>0若三数均不为0,其
因为a平方加上b平方等于c平方,又因为a平方+b平方大于等于2ab故c平方大于等于2a
要使1/c最小,则使c最大,即c=10则0小于b小于a小于10,因为ab=1,则a>1,b<1,b=1/a式子前半部分可化为:(a^4+1)/a/(a^2-1)求导,得到a=根号(2+根号3)
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
记f(x)=arctanx,f'(x)=1/(x^2+1)由拉格朗日中值定理存在tf(b)-f(a)=f'(t)(a-b)从而|f(b)-f(a)|=|a-b|*1/(1+t^2)≤|a-b|得证
ab小于等于四分之(a+b)的平方则a+b+1小于等于四分之(a+b)的平方然后把a+b看成一个未知数求这个不等式你自己会求把?求采纳
反证法:假设a+b>2则b>2-aa³+b³>a³+(2-a)³=a³+8-3*12a+3*2a²-a³=6a²-24a
-4≦a≦-2
可以用方程组的解法,AB=0.B为方程组解,则解的个数s=3-r(a).B的解的个数为B的秩,So.r(a)+r(b)=3.若方程无解则r(b)
1)ab有一个等于0的时候显然成立2)ab同号时|a|-|b|
因为这两个都是正数,所以用他们的平方来证明|a+b|^2=a^2+2ab+b^2(|a|+|b|)^2=a^2+2|ab|+b^2显然下面的式子中的2|ab|>=2ab所以命题得证:a+b的绝对值小于
ab<0b/a<0,a/b<0b/a+a/b=-[(-b/a)+(-a/b)](-b/a)+(-a/b)≥2所以-[(-b/a)+(-a/b)]≤-2等号成立的条件是:(-b/a)=(-a/b)a^2
(√ab)³=(√ab)²·√ab=ab的绝对值·ab∵a≤0,b<0∴ab≤0∴ab的绝对值=-ab∴原式=-a²b²
实际上r(AB)
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
因为r(A,B)=max{r(A),r(B)};且r(A)>=0,r(B)>=0;所以max{r(A),r(B)}再问:第一句可以有证明吗?再答:额,怎么说呢,这是必然的呀,不用证明的,肯定是取行向量
因为(a+b)²=a²+b²+2ab=(a-b)²+4ab≥4ab即(a+b)²≥4ab当a≥0,b≥0时,不等式两边开平方得a+b≥2(ab开的平方
ab小于0说明一正一负a/b也小于0B或者ab小于0说明b不等于0有b平方大于0两边同除以b的平方有a/
a≤0,b√(ab)^3=√(ab)^2×√(ab)=ab√(ab)再问:是根号下ab的三次方。是b的三次方。再答:是根号下ab的三次方。是b的三次方。√(ab^3)=√b^2×√(ab)=|b|√(