证明:若正项级数∑(1到n)an收敛,则∑(1到n)(根号an) n收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:55:47
由于级数∑an收敛,所以an->0.于是存在充分大的N,当n>N时,有anN,an^2由于级数收敛只要考虑尾项,而∑an^2的尾项已经被∑an控制住了,所以后者收敛推出前者收敛
因为a(n)单调有界、正,a(n)->a>=0.1、如果a=0,结果不一定正确.例如a(n)=1/n,级数的通项=n/(n+1)-(n+1)/n=-(2n+1)/(n(n+1)),这个不收敛.2、如果
由题目有1/a再问:那个后面是∑1/(an-bn)没写清楚不好意思>-
俺来回答一下,马上拍照再答:
An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n
(n/n+1)^(n^2)=[(1-(1/(n+1)))^(n+1)]^(n^2/(n+1))(1/e)^(n-1)是收敛的.
1/2^(n+(-1)^n)
显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,故原级数条件收敛按照你
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明正项级数收敛,只需证明其部分和数列有上界显然,正项级数∑(n从1到∞)an收敛,则Sn=a1+a2+...+an有界从而Tn=a1^2+a2^2+.+an^2
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?
|(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))|《(1/π)^n因为∑(1/π)^n收敛,所以:∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))绝对收敛
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
http://www.math.org.cn/forum.php?mod=viewthread&tid=28241&extra=
方法1比较审敛法:因为lnn>1得1/(n×lnn)
发散p级数,只要p≤1就发散这个当结论记,不需要什么证明真要证明的话,这样证明:利用lim(n->+∞)Sn=常数来证1/√n级数的和求不出的1/√n>1/n对于∑1/nSn=1+1/2+1/3+……
只要证明部分和数列有界即可.对任意的N,SN=积分(从1到N+1)e^(-根号x)dx=(变量替换)积分(从1到根号(n+1))2te^(-t)dt
/>再问:不好意思,我写得不清楚,是(根号an)/n还有,an收敛,也可能是a(n+1)\an=1这不严密再答:再问:.....limn/(n+1)*lim根号(a(n+1)/an)前者=1,后者不确