证明:若一个凸四边形两对角线的平方和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:12:01
1.∵四边形的对角线垂直且相等∴四边形为正方形又连接四边中点∴连接的四边形四边相等(中位线定理,对角线相等)又对角线互相垂直∴连接的四边形一角为90度∴此四边形为正方形2.不知是题错了还是我不会知道了
如图:梯形等腰梯形ABCD中,AB‖DC,AD=BC,E、F、G、H分别为AB、DB、DC、AC的中点求证:EFGH为菱形证明:∵E、F分别为AB、DB的中点∴EF为△ADB的中位线∴EF‖AD,EF
是菱形.证明:设等腰梯形ABCD,AD∥BC,AB=DC,E、F、G、H分别是AD、BD、BC、AC的中点,∴EF是△ABD的中位线,∴由中位线定理得:EF=?AB同理:EH=?DC,FG=?DC,G
证明:设四边形ABCD对角线AC,BD中点分别是Q,P.在△BDQ中,BQ2+DQ2=2PQ2+2?2=2PQ2+即2BQ2+2DQ2=4PQ2+BD2.①在△ABC中,BQ是AC边上的中线,所以BQ
这是托密勒定理的内容,百度一查就有具体证法
对角线相等则大四边形为平行四边形.连它的两对角线把大四边形分成两个全等的三角形,因为都是中点所以小四边形每边都是对应三角形的中位线,这样易证小四边形是平行四边形,又对角线相等,AC=BD,所以1/2A
(1)等腰梯形、矩形、正方形.(2)结论:等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于一条对角线的长.已知:四边形ABCD中,对角线AC,BD交于点O,AC=BD
已知:四边形ABCD是中心对称图形,其对称中心为O,且对角线AC、BD交于O.求证:ABCD是平行四边形.证明:因为AOC共线,而AC关于O对称,所以AO=CO.同理,BO=DO.所以这个四边形的对角
1.是矩形.因为中点连线和底线平行且等于1/2底线.所以就是一个矩形2.设三角形各别的为3x,4x,6x联结各别的中点所得的三角形三边3x/2,4x/2,6x/23x/2+4x/2+6x/2=52x=
四边形ABCD,EF为两中点连线,连接BF、DF有三角形中线的推论得4EF^2=2BF^2+2DF^2-BD^2,同理4DF^2=2AD^2+2CD^2-AC^2,4BF^2=2AB^2+2BC^2-
画凸四边形ABCD,连接对角线,焦点为O以BD为底边,分别由A,C引垂线至BD,A至BD的距离为H1,C至BD的距离为H2则四个三角形的面积分别是2△ABO=BO*H12△CDO=DO*H22△ADO
设ABCD中,AC平分A得角1和角2AC平分C得角3和角41和3在一侧2和4在一侧角1+角3=角2+角4所以角B=角D对角相等.同理可证得角A=角C所以对角相等是平行四边形.再证便易.
证明两对对顶角的三角形相似,然后内错角相等,两线平行.-------------------------两组对边分别平行的四边形是平行四边形.再问:能不能写出过程?再答:证:由于AO:CO=BO:DO
设平行四边形ABCD中,向量AB=向量a,向量BC=向量b则向量CD=向量-a,向量DA=向量-b则向量AC=向量a+b,向量BD=向量b-a向量AC²+向量BD²=向量a&sup
勾股定理知,被划分的四个三角形斜边相等,证毕
如图,设AD=a,BC=b,BD=AC=c,BD⊥AC,作平行四边形ADBE,边EC,则EC=√2*c;当AD//BC时,a+b=CE=c;当AD与BC不平行时,a+b>c;因此a+b≥c
用全等,先证明是平行四边形,再证明每条边长度都相等,就是菱形了
依次连接任意四边形各边中点所得到的四边形是平行四边形.依次连接平行四边形各边中点所得到的四边形是平行四边形.依次连接梯形各边中点所得到的四边形是平行四边形.依次连接矩形各边中点所得到的四边形是菱形.依
以AB为一边,以A和B各为顶点作:∠BAE=∠CAD,∠ABE=∠ACD,△ABE∽△ACD相见图
你这个对角线是不是垂直的啊?再问:对角线不垂直再答:不垂直就不是了,比如一个长方形变长为3和4那么对角线长就为55*5=2525/2=12.5,而长方形的面积为12,明显不等了