证明:若G是简单图,则ε≤v*(v-1) 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:25:24
证明:若G是简单图,则ε≤v*(v-1) 2
设G是n(n>=2)阶欧拉图,证明G是2-边连通图

n欧拉图不一定是2-边连通图吧.举例:5阶完全图,显然为4-边连通图,且每顶点度为4,故也为欧拉图,为题设反例.

证明一个简单图是哈密顿图

G是有n个结点的简单无向图,如果G中任意一对结点的度数之和均大于等于n,则G中存在一条哈密尔顿回路再问:你说的我知道,可是到我发的这道题上怎么用啊,题在图片上再答:用数学归纳法证明先证明n=3时,G是

设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群

显然中心Z(G)是G的一个正规子群,如果G/Z(G)是循环群,且则G/Z(G)=时:令xH,yH属于,且xH=的s次方,yH=的t次方,则xH=a的s次方*H,yH=a的t次方*H,所以有p属于H和q

简单图G有n个结点,e条边,设e>(n-1)(n-2)/2,证明G是连通的

参考《图论及其应用》一书高等教育出版社张先迪李正良主编上面有你问题的答案很详细

1.设简单图G是一个Euler图.证明:G中每一个顶点u,均有w(G–u)≤(1/2)d(u).

1、那个w()是什么意思,还望说明一下.2、有.把一个四边形的框的一个顶点和一个三角形的框的一定顶点订在一起,那么形成一个有6个顶点、7条边的Euler简单图.

证明:若G是一个具有奇数顶点的二分图,则G中没有Hamilton圈

(数学归纳法)当n=3个顶点时候,明显假设当n=k,k为奇数时,没有Hamiton圈.1当n=k+2时,假设有hamiton圈那么由于是二分图,圈中相邻顶点属于不同group,假设ABCD是圈中四个相

离散数学一道证明题证明:一个联通无向图G中的结点v是割点的充分条件是存在两个结点u和w,使得结点u和w的每一条路都通过v

若结点v是连通图G=的一个割点,设删去v得到子图G',则G'至少包含2个连通分支.设其为G1=,G2=,任取u∈V1,w∈V2,因为G是连通的,故在G中必有一条连接u和w的路C,但u和w在G'中属于两

简单无向连通图G的任何一条边都是G的某一颗生成树的边 证明题

首先要判断无向图中是否带有循环的.如果生成树是连通的,则去掉任何一条边都不连通.生成树是连通的,并且|E|=|V|-1.树中任何两点都由一个简单的通路连接.

设G是有n个结点n条边的简单连通图,且G中存在度数为3的结点,证明G中至少有一个度数为1的结点

设D为结点度数因为简单连通图所以Di>=1且sum(Di)=2*n,1,2,...,n因为存在Dx=3所以剩余n-1个结点度数和为sum(Di)-Dx=2*n-3假设不存在度数为1的结点那么Di>=2

图对于图G= ,其中 |V| =n,|E|=n+1 ,证明G中至少有一个结点的度数≥3

证明反证法,如果G中所有结点的度数均小于3,或不超过2,则n个结点度数之和不超过2n,结点度数之和等于边数的2倍,即结点度数之和=2|E|=2n+2,故有2n≥2n+2,n≥n+1,矛盾.

图论:证明若G为简单连通图,且G中任意一对不相邻顶点u和v满足d(u)+d(v)>=n-1,则G有Hamilton路.

跟O.Ore1960的一个定理有点像,可能证明方式会有参考吧http://wenku.baidu.com/view/1c8a3aa6f524ccbff1218497.html

假设图G采用邻接表存储,设计一个算法,输出图G中从顶点u到v的所有简单路径.

#include"stdio.h"#defineMAX5typedefstructArcNode{\x09/*单链表中的结点的类型*/\x09intadjvex;/*该边指向的顶点在顺序表中的位置*/

已知4NH3(g)+5O2(g)=4NO(g)+6H2O(g),若反应速率分别是v(NH3)、v(O2)、v(NO)、v

因为反应速率之比为计量数之比,即v(O2):v(H2O)=5:6,所以是6v(O2)=5v(H2O),B不对,同理可得D对.

无向图G=,且|V|=n,|e|=m,试证明以下两个命题是等价命题:G中每对顶点间具有唯一的通路,G连通且n=m+1

G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层

在简单无向图G=中,如果V中的每个结点都与其余的结点邻接,则该图称为_____如果V有n个结点,那么他还是____度正则

在简单无向图G=中,如果V中的每个结点都与其余的结点邻接,则该图称为__正则图___;如果V有n个结点,那么他还是__n-1__度正则图.各顶点的度均相同的无向简单图称为正则图(regulargrap

一道多项式题目求证明!证明:f(x),g(x)互素的充要条件是对任意多项式φ(x),有u(x)f(x)+v(x)g(x)

充分性:若f,g互素,那么有pf+qg=1,两边乘φ即得uf+vg=φ,必要性:若对任意φ有uf+vg=φ,取φ=1得uf+vg=1,则f,g互素

证明题-集合函数若g(x)=x²+ax+b,则g[(x1+x2)/2]≤[g(x1)+g(x2)]/2证明上面

代入左侧得[(x1+x2)/2]^2+a(x1+x2)/2+b代入右侧得[(x1)^2+(x2)^2]/2+a(x1+x2)/2+b即证明:[(x1+x2)/2]^2+a(x1+x2)/2+b≤[(x

哈密尔顿图证明题设G是简单图,删去G中任一边e,则G-e是一棵生成树.证明是哈密尔顿图

根据题意可得g为一个有回路的简单图,然后假设有点不再回路上,去掉与这个点相连的边,与G-e是一棵生成树是一颗生成树矛盾,所以所有点必在这个回路上,所以必为哈密尔顿图