证明:当x趋向于0时,有:arctanx x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:35:19
证明:当x趋向于0时,有:arctanx x
证明函数f(x)=x/绝对值x 当x趋向于0时极限不存在

x→0+则|x|=xf(x)=x/x=1所以x→0+,limf(x)=1x→0-则|x|=-xf(x)=x/(-x)=-1所以x→0-,limf(x)=-1左右极限不相等所以极限不存在

证明函数f(x)=/x/当x趋向于0时极限为零

极限是0.证明:对于任意给定的正数ε,存在正数δ=ε,当0<|x|<δ时,||x|-0|<ε,所以lim(x→0)|x|=0----计算:左极限:x<0时,y=-x,x→0时,y→0右极限:x>0时,

证明函数f(x)=IxI当X趋向于0时极限为零怎么证啊?

画图来证会比较简单~这样你画出来会是一个关于Y轴且恒大于等于0的偶函数图象~以此来说明~当X趋向于0,f(x)也趋向0

用极限的定义证明x趋向于0时,x+2lnx趋向于负无穷.

X+2INX.X是趋近于0的.INX是趋近于负无穷的.两者相加X+2INX是趋向于负无穷的.

当x趋向于0时,limf(x)/x=1,且f‘’(x)>0,证明:f(x)>=x

由limf(x)/x=1知f(0)=0且f'(0)=1.令g(x)=f(x)-x有g(0)=0g'(x)=f'(x)-1g'(0)=0g''(x)=f''(x)>0所以g(x)>=0,证毕

lim(1/x^2)(sinx)=0 当x趋向于无穷.如何用定义证明.

lim(x→∞)sinx/x^2=0考虑|sinx/x^2-0|≤|1/x^2|先限定x的范围:|x|>1,于是有|x|X,就有|sinx/x^2-0|

当X趋向于0时 证明lim arctanX/X=1

limarctanX/X=limcosx*(sinx/x)=limcosxlimsinx/x=1

当x趋向于0时,ln(1+x)~x等价无穷小的证明.

lim(x→0)ln(1+x)/x=lim(x→0)ln(1+x)^(1/x)=ln[lim(x→0)(1+x)^(1/x)]由两个重要极限知:lim(x→0)(1+x)^(1/x)=e,所以原式=l

证明y=x*sin1/x为当x趋向于0时的无穷小

楼上TEX都弄出来了!因为当x趋向于0时,sin(1/x)是一个有界量,而x是无穷小量,无穷小量与有界量的积仍是无穷小量,所以lim(x-->0)xsin(1/x)=0

按定义证明 当x趋向于正无穷时,lim1/2^x=0

证明:①对任意ε>0,要使|1/2^x-0|只要|1/2^x-0|=1/2^x1/ε即只要满足:x>|lnε/ln2|≥lnε/ln2即可.②故存在N=[|lnε/ln2|]∈N③当n>N时,n≥N+

证明:当X趋向于时0时,arctanx等价于x.

令arctanx=tlim(arctanx/x)=lim(t/tant)=lim(t/sint)*limcost=1所以arctanx~x.

证明:当x趋向于1时,有:arctanx~x

证明:应改为x→0令arctanx=u,则x=tanulim[x→0]arctanx/x=lim[u→0]u/tanu=lim[u→0]ucosu/sinu=1希望可以帮到你,如果解决了问题,请点下面

当x趋向于0时,tanx~x是等价无穷小的证明

lim(x→0)tanx/x=lim(x→0)(sinx/x)*1/cosxsinx/x极限是1,1/cosx极限也是1所以lim(x→0)tanx/x=1所以tanx~x

证明:当x趋向于0时,有:arctanx~x

洛必达法则或则两个去比,然后上下同时取tan值,则比值等于1

当x趋向于0时|sinx|/x的极限

1再问:为什么呢再答:等价无穷小。。再答:sinX=X再问:?我干开始学,sin带了绝对值sin/x的极限为1也成立?再答:对再问:-_-||好吧我还是等老师教吧,谢了

当x趋向于0时,sinx存在极限吗

存在,等于0,因为sin是连续函数,所以limsinx=sin0=0

当X趋向于0时,sinx是否等于x?

说趋向于更贴切!

当x趋向于0时,证明(1+x)开根号n次方-1~n分之x

lim(x->0)[(1+x)^(1/n)-1]/(x/n)0/0型用洛必达法则=lim(x->0)1/n(1+x)^(1/n-1)/(1/n)=lim(x->0)(1+x)^(1/n-1)=1^(1

当x趋向于0 tanx 有没有极限

tanx=sinx/cosx当X趋于零是SINX趋于0COSX趋于无限大所以极限是0