证明:limn a^n=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:57:52
可以这样想:从两个分别装有n个球的袋子里各拿若干球,那么加在一起刚好是n个球的概率是多少?两种解法:1、复杂一点:第1个袋子0个第2个袋子n个,第1个袋子1个第2个袋子n-1个...,第1个袋子n个第
R(A)和R(B)的秩都小于等于n,而AB是m*m的方阵,m>n,所以AB不是满秩阵,所以|AB|=0
这个么.肯定用数学归纳法.写法很繁琐.你加油.再问:你别光用汉子哈,帮忙解下啦。这个鸟题我好几天都搞不出来。。再答:这写要一大串,而且电脑输入很慢,还要用公式编辑器,你问问你老师吧再问:我就是因为上课
令N=[a]+1,则当n>N时,有n>a,且a/(N+1)N时,a^n/n!=a/1*a/2*...*a/N*a/(N+1)*...a/n
下面给出一般情形,另a=2即可证明:lima的n次方/n!=0【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……
证明:对于任意给定的ε>0,要使│2^n/n!-0│=2^n/n!<ε2^n/n!=(2/1)(2/2)...(2/n)=2(2/3)(2/4)...(2/n)<2/n
an=n!/n^n则lim(n→∞)a(n+1)/an=lim(n→∞){(n+1)!/[(n+1)^(n+1)]}/[n!/(n^n)]=lim(n→∞)(n^n)/[(n+1)^n]=lim(n→
x^n+y^n≡x+y(modp)所以1^n+p-1^n≡p(modp)≡0(modp)同理.所以1^n+2^n+…+(p-1)^n≡0(modp)当然注意p是奇数,否则不成立比如,当p=6n=1时1
limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n
对于任意小的正数ε,取N=1/ε,那么当n>N时就有:n>1/ε,两边同乘n^(n-1)n^n>n^(n-1)/ε,注意到n^(n-1)>n!n^n>n!/εn!/n^n
楼主先打清楚,cos2n是不是在分母上.不是的话,这题很好证明...速度啊那就好办|1/n*cos2n-0|=|1/n*cos2n|=|1/n|*|cos2n|≤1/n因此对于任意的ε>0,存在N=【
考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0
若a=0,结论不言而喻,所以只讨论a≠0.【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]
a^(1/n)-1=bnlna/n=ln(bn+1)n(a^(1/n)-1)=lna*bn/ln(bn+1)当n足够大时0
对于任意的ε,因为(n)^1/n>1,令(n)^1/n=1+b,则n=〖(1+b)〗^n=1+nb+[n(n-1)/2]b^2+…(二项式展开)所以当n>3时,n>1+[n(n-1)/2]b^2,从而
因为limλn=λ,所以λn是有界的,当n->∞,1/n=0也就是无穷小.那么根据“有界函数与无穷小的乘机还是无穷下”可知limλn/n=0
因为n!=1*2*3*4*5*6*…*n,所以(n+1)n!=1*2*3*4*…*n*(n+1)=(n+1)!
用后项比前项:因{2^(n+1)(n+1)!/(n+1)^(n+1)}/{2^n(n)!/(n)^n=2/(1+1/n)^n趋于2/e
1/n极限是0那么对于任意1>a>0都存在N当n>N>1时1/n