证明: lim*n n=0(a>1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:33:20
因为b1,b2,...,bn是AX=0的解而齐次线性方程组的解都可由其基础解系线性表示所以b1,b2,...,bn可由Ax=0的基础解系线性表示
题目没写清楚:n到底趋近于哪个数再问:n趋近于无穷大再答:用定义证明啊,很简单的:那个符号打不出来:deta定义当n趋近于无穷大时|(-1/6)n-0|N时,存在一个任意小的正数,n=1/(6a),|
An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n
我的回答很详细吧!
令N=[a]+1,则当n>N时,有n>a,且a/(N+1)N时,a^n/n!=a/1*a/2*...*a/N*a/(N+1)*...a/n
Limit[1/√(n^2+1)+1/√(n^2+2)+…+1/√(n^2+n),n→∞]≥Limit[1/√(n^2+n)+1/√(n^2+n)+…+1/√(n^2+n),n→∞]≥Limit[n/
令t=arctanx,则x=tantlim(arctanx)/x=limt/tant=limt·cost/sint=1
∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n
设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0-LL+1>(1+x)^a>-L+1(L+1)^(1/a)>x+1
这个等式的成立需要2个条件:An不等于0,a不等于0.证明:因为limAn=a,所以对于|a|/2>0,存在自然数N1,使当n>N1时,有|An-a|=|a|-|a-An|>a/2,|(1/An)-(
若a=0,结论不言而喻,所以只讨论a≠0.【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]
设a=1+h,则h>0为具体的常数a^n=(1+h)^n=1+nh+n*(n-1)h^2/2+……>n*(n-1)h^2/200
lim(x→0)cosx=cos0=1如果不懂,祝学习愉快!再问:再问:怎么证明?再答:证明:对任意的ε>0,解不等式|cosx-1|=|2sin²(x/2)|=2|sin(x/2)|
利用stolz定理,是最简单的做法结论是明显的~如果不用stolz定理,做法其实也不难~lim(n→∞)a(n+1)/a(n)=a根据定义:对任意ε>0,存在N>0,当N>N,就有|a(n+1)/a(
∵lim(Xn)=a∴对于任意的n,存在正整数N,使得当n>N时,|Xn-a|