证明1 a1线性代数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:53:15
把第2行的-1倍,第3行的-1倍加到第1行:b1+c1b2+c2b3+c3||-2a1-2a2-2a3||c1+a1c2+a2c3+a3|=|c1+a1c2+a2c3+a3||a1+b1a2+b2a3
经典老题.我写一些步骤,一看就明白的.(1)从第二行开始,各行都减去第一行1+a111...1-a1a20...0-a10a3...0.-a100...an(2)第二行除以a2,第三行除以a3...第
帮你证证看,答案稍等.解答如下:A*a1=-a1,A*a2=a2;A*a3=a2+a3反证法:假设三者线性相关,则存在k1,k2不全为0满足a3=k1*a1+k2*a2;所以A*a3=A*(k1*a1
记X=【a1,a2,...,an】',Y=【B1,...,Bn】'则Y=MX,M是n*n矩阵M写出来就是第i行只有i,i+1项是1(最后一行是第n和第1项)然后你看看M的行列式,用归纳法一下就能求出来
给你个思路,显然有a1,……an线性无关(由范德蒙德行列式不为0容易证明)因此得证我先回答的>_
先假设a1+a2与a1-a2线性有关,即存在不同时为0常数k1、k2使k1(a1+a2)+k2(a1-a2)=0,然后展开的(k1+k2)a1+(k1-k2)a2=0,即k1=k2=0,与假设矛盾,即
证:设r1(a1+b)+r2(a2+b)+.+rn(an+b)=0那么r1*a1+r2*a2+.+rn*an+(r1+r2+...+rn)*b=0因为a1,a2,.,an,b线性无关,所以r1=r2=
设k1(a1+a2)+k2(a2-a3)+k3(a1-2a2+a3)=0(k1+k3)a1+(k1+k2-2k3)a2+(-k2+k3)a3=0因为向量组a1,a2,a3线性无关,所以k1+k3=0k
第一个证明简单的...再答:再答:
线性相关的定义不就是存在不全为0的k1,...kn使得那个等式等于0么.根绝这个去想,不明白HI我
这种稀疏的矩阵一般是直接用定义展开来做.设所求的行列式为F(n),那么按最后一列展开得F(n)=An*x^n+F(n-1)然后用归纳法归纳一下就得到结论了.注:这个行列式叫Frobenius行列式.
先证明a1,a1+a2,a1+a2+a3线性无关,令:x1a1+x2(a1+a2)+x3(a1+a2+a3)=0,整理得(x1+x2+x3)a1+(x2+x3)a2+x3a3=0,因为a1,a2,a3
所求得的对角阵与A相似,所以A与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N–1)重.所以A也是这样应该懂了吧
因为a2,.,am线性无关所以a2,.,am-1线性无关而a1,a2,.,am-1线性相关所以a1可由a2,.,am-1线性表示再问:额,问的是求am能由a2,…,am-1线性表示,求老师解答再答:a
(1)是正确的,(2)是错误的.证明:由已知,存在不全为0的实数组k1,k2,.,k(m-1)使k1a1+k2a2+.+k(m-1)a(m-1)=0假如k1=0,则k2a2+k3a3+.+k(m-1)
这个直观理解就行了,向量组增加一个向量b后,若b可以用原来的向量组线性表示,那么秩不变,反之,秩增加1;换句话说,给向量组增加一个向量,向量组的秩增加不超过1.
设k1a1+k2a2+k3a3=0,左乘A,利用条件得-k1a1+k2a2+k3(a2+a3)=0,两式相减得k3a2-2k1a1=0,由于a1a2线性无关(属于不同特征值的特征向量必线性无关),故k