证明,非齐次线性方程组 对任意常数b1,b2,bn都有解的充要条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/29 15:30:14
证明,非齐次线性方程组 对任意常数b1,b2,bn都有解的充要条件
设A是n阶实矩阵,b是任意的n维向量,证明线性方程组ATAx=ATb有解.其中AT表示A的转置

这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧

线形代数证明题证明:非齐次线性方程组∑aij xj=bi (i=1,2,……n) 对任意常熟b1,b2,……,bn都有解

①假设|A|≠0,根据克拉默法知道对任意b有唯一解.②假设对任意b1,bn都有解取b1...bn为n为空间的基向量记b1=(1,0...,0)b2=(0,1...0)...bn=(0,0..1)那么A

设A是n阶矩阵,证明:非齐次线性方程组Ax=b对任何b都有解的充分必要条件是A的行列式不等于0

充分性:∵A是n阶矩阵,且|A|≠0∴秩r(A)=n,即满秩,∴增广矩阵r(A,b)=n∵r(A)=r(A,b)=n∴非齐次线性方程组Ax=b对任何b都有解.必要性:假设|A|=0,即r(A)<n,若

一道线性代数题.证明 线性方程组

写成分块矩阵形式:C=【Abb^T0】,条件是A与C的秩相等.要证明线性方程组有解,只需证明r(A)=r(A,b)即可.由于r(A)=r(C)>=r(A,b)>=r(A),因此有r(A)=r(A,b)

请问一道考研数学线性方程组的题:证明任意b,AX=B总有解的充要条件是|A|不等于零

这不矛盾事实上,此时Ax=b有唯一解.A是方阵的前提下:|A|≠0(r(A)=n),方程组Ax=b有唯一解|A|=0(r(A)

两个非齐次线性方程组的向量证明题

以下均从向量的角度去证明:1.非齐次线性方程组有解的充要条件是系数阵的秩等于增广阵的秩,即r(A)=r(A,b).r(A)=m说明A阵中行向量组线性无关,那么行向量组的延伸组也线性无关,即有(A,b)

非齐次线性方程组 解以下线性方程组

利用矩阵的计算原方程组可化为如下矩阵11115111151111512-14-201-23701-23-72-3-1-5-2===>0-5-3-7-12===>00-138-473121100-2-1

线性方程组证明设A是n阶方阵,Ax=0只有零解,求证,对任意正整数k,A^kx=0(A的k次方x)也只有零解

Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解

证明:对任意正整数n,不等式ln((n+2)/2)

用数学归纳法证明:当n=1时,ln((1+2)/2)=ln(3/2)=1)不等式成立,即ln((k+2)/2)={[(k+2)/(k+1)]^(k+1)}^[1/(k+1)]=(k+2)/(k+1)=

线性方程组同解问题2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里

矩阵相当于映射,矩阵奇异时,映射是多对1的;m*n矩阵A就是将n维空间的点映射到m维空间(保持原点映为原点),其映射核定义为应到m维空间的原点的所有点;其秩则是像所能占据的最大的空间维数.映射核的维数

线性代数非齐次线性方程组证明题

非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是不会改变,只有矩阵行数发生变化,矩阵的秩

非齐次线性方程组的向量证明题

设η,ξ1+η,ξ2+η…ξm+η线性相关则η=k1(ξ1+η)+k2(ξ2+η)+.+km(ξm+η)η=(k1+k2+.+km)η+(k1ξ1+k2ξ2+.+kmξm)有因为ξ1,ξ2…ξm是其相

线性方程组 证明有解 

我想到了一个好简单的办法不知道行不行再问:我已经做出了再答:再答:看下你的方法再问:再答:一样的和我的