证A^-1 B^-1可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:55:47
证A^-1 B^-1可逆
线性代数问题 若A,B,A + B 都可逆 证明 A^-1 + B^-1可逆,且逆为A*(A+B)^-1*B

证明因为B(A^-1+B^-1)A=A+B且A,B,A+B都可逆所以A^-1+B^-1=B^-1(A+B)A^-1而A^-1,(A+B),B^-1都可逆,所以乘积也可逆,所以A^-1+B^-1也可逆且

线性代数...若A,B可逆,那么AB可逆?AA可逆?

对的.且有(AB)^-1=B^-1A^-1(A^2)^-1=(A^-1)^2

问两道矩阵题目1.设n阶方阵A,B,A+B均可逆.证明A^-1+B^-1也可逆,并求其逆矩阵.2.设A是n阶可逆矩阵,证

(1)AA*=|A|E.①|A*|=|A|^(n-1).②则A*(A*)*=|A*|E=|A|^(n-1)E再两边同时乘以A则AA*(A*)*=|A|^(n-1)EA.③把①式代入到③式中可得到即|A

线性代数 A,B为可逆矩阵,求证A^(-1)B+B^(-1)A=E

按照我对这道题目意思的理解,感觉是有问题的吧,如取A,B均为二阶单位阵,代进去算式不成立啊

一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求其逆阵.

首先注意到A(A^{-1}+B^{-1})B=B+A,于是A^{-1}+B^{-1}=A^{-1}(A+B)B^{-1},从而有(A^{-1}+B^{-1})^{-1}=B(A+B)^{-1}A.

矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

因为A,B相似所以存在可逆矩阵P使得P^-1AP=B由于A可逆,故B可逆(同阶可逆矩阵的乘积仍为可逆矩阵)且B^-1=(P^-1AP)^-1=P^-1A^-1(P^-1)^-1=P^-1A^-1P故A

设矩阵A,B及A+B都可逆,证明A^-1+B^-1也可逆,并求其矩阵

由(A^-1)+(B^-1)=(A^-1)*(A+B)*(B^-1)得((A^-1)+(B^-1))*(B*((A+B)^-1)*A)=((A^-1)*(A+B)(B^-1))*(B*((A+B)^-

A ,B为二阶方阵,且2A^(-1)B=B-4E.证明:A-2E可逆.

首先A可逆,要不已知条件本身就不成立.把A乘过来.1.2B=AB-4A2.4A=AB-2B3.4A=(A-2E)B4.由于A可逆,故|A|不等于0,故|(A-2E)B|=4|A|不等于零5.那么|A-

线性代数 考研:A、B 是n阶矩阵,E-AB可逆,证E-BA可逆.

记号:[A,B;C,D]表示2X2分块矩阵,第一行块为A,B,第2行块为C,D.考虑[E-AB,0;B,E],将其第二行块左乘A加到第一行块得[E,A;B,E],再将第一行块左乘-B加到第2行块得到[

线性代数你矩阵若A,B均为n阶可逆矩阵,问A-B,AB,AB^(-1)是否一定为可逆矩阵?若不是,请举例说明B^(-1)

A,B都可逆,那么A和B的加减、数乘、矩阵乘、求逆、转置的结果都是可逆矩阵:(A-B)^-1=(A^-1)-(B^-1)(AB)^-1=B^-1A^-1(AB^-1)^-1=BA^-1

设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,

容易验证:(A^-1)(A+B)(B^-1)=B^-1+A^-1.**由于可逆阵的逆阵可逆,可逆阵的乘积可逆,由上式知:A^-1+B^-1可逆.再由性质:(AB)^-1=(B^-1)(A^-1)由(*

设A,B为n阶可逆矩阵,且E+BA^-1可逆,证明E+A^-1B可逆,并求出其逆矩阵表示式.

因为:A^-1[(E+BA^-1)AB^-1]B==A^-1[AB^-1+E]B=E+A^-1B由于可逆阵之积仍为可逆阵,故知:(E+A^-1B)可逆,(AB^-1+E)可逆(按照积取逆的定理:(AB

证明可逆矩阵A= a b E= 1 0c d 0 1a^2+b^2+c^2+d^2小于1,证E-A为可逆矩阵 咳咳

显然ρ(A)再问:可以详细点么?咳咳。。。。。。再答:记号看不懂还是过程不明白?再问:记号过程都。。。咳咳。麻烦了再答:ρ(A)是A的谱半径,即特征值的模的最大值||A||_2是A的2-范数,即A^T

矩阵 已知A可逆 B可逆 A+B可逆 求证A的逆+B的逆 可逆

因为A(A^(-1)+B^(-1))B=[E+AB^(-1)]B=B+A即(A^(-1)+B^(-1))=A^(-1)(B+A)B^(-1)因为A可逆,B可逆,A+B可逆所以得证.

线性代数一道选择题设A,B均为n阶方阵,E+AB可逆,则E+BA也可逆,且(E+BA)^-1=(A) E+(A^-1)(

(C)E-B[(E+AB)^-1]A(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-B(E+AB)[(E+AB)^-1]A=E+BA-BA=

设矩阵A,B及A+B都可逆,(A^-1)+(B^-1)=(A^-1)*(A+B)*(B^-1)这个式子怎么来的,看不懂啊

(A^-1)*(A+B)*(B^-1)=[(A^-1)*A+(A^-1)*B]*(B^-1)=[E+(A^-1)*B]*(B^-1)=[(B^-1)+(A^-1)*B*(B^-1)]=(B^-1)+(

线性代数的选择题A ,B为同阶可逆矩阵b)存在可逆矩阵P 使P^-1 AP=B为什么不对?D)存在可逆矩阵P和Q,使得P

存在可逆矩阵P和Q,使得PAQ=B,这其实就是通过初等变换实现的,P表示行变换,Q表示列列变换.存在可逆矩阵P使P^-1AP=B,这说明A与B相似,但不是随便两个矩阵都相似的

下列命题正确的是A如果AB=I,则A可逆且A^-1=B,如果矩阵A,B均为n阶可逆,则A+B必可逆,

答案是DA:没有说A,B是方阵加上A,B是方阵就对了B:取特例不妨令A=-B,则A+B=0,不可逆C:取特例不妨令A=diag(1,0),则B=diag(0,1),则A+B=I,可逆(diag,对角阵