设隐函数y=y(x)由方程x-3y e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:28:26
设隐函数y=y(x)由方程x-3y e
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

设y=y(x)是由方程y=tan(x+y)所确定的隐函数,求微分dy

两边对x求导:y'=(1+y')[sec(x+y)]^2得y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=1/{[cos(x+y)]^2-1}因此dy=dx/{[cos(x+y)]^

设函数y=y(x)由方程x^2+y^2=1确定,求dy/dx

d(y^2)/dx=d(y^2)/dy*dy/dx=2y*dy/dx这个复合函数求导法则正如ovtr0001仁兄所说那样,你可以翻翻课本这个……还要详细点呀?你有书么?你看书那里不懂可以提出来,我可能

设函数y=y(x)由方程lny=tan(xy)所确定,求dy

左右对x求导有y'/y=sec²(xy)(y+xy')整理有y'=y²/(cos(xy)-xy)所以dy=(y²/(cos(xy)-xy))dx

设函数y=y(x)是由方程cos(xy)=x+y所以确定的隐函数,求函数曲线y=y(x),过点(0,1)的切线方程

cos(xy)=x+y两边微分,得dx+dy-sin(xy)*(x*dy+y*dx)=0dx(1-ysin(xy))+dy(1-xsin(xy))=0dy/dx=(ysin(xy)-1)/(1-xsi

设函数y=y(x)是由方程cos(xy)=x+y所确定的隐函数,求函数的曲线y=y(X)过点(0,1)的切线方程

令F(x,y)=cos(xy)-x-yF'(x,y)x=-ysin(xy)-1对x求偏导F'(x,y)y=-xsin(xy)-1对y求偏导切线方程为:(x-0)/F'(x,y)=(y-1)/F'(x,

设函数y由方程ln y+x/y=0确定,求dy/dx

lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-

设函数y=y(x)由方程x^2+y^2=1确定,求dy/dx

两边对x求导2x+2y*dy/dx=0dy/dx=-x/y有不明白的追问再问:刚学不太明白,2x+2y*dy/dx=0里的dy/dx哪来的,是y'吗?再答:是的复合函数求导注意这里y是x的函数不妨换个

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].

设函数y=f(x)由方程e∧y+sin(x+y)=1决定,求二阶导数

两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1

,.设y=y(x)是由方程e^x-e^y=xy所确定的隐函数 求y'(0)另一题设y=y(x)由参数方程x=cos t和

网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数y=y(x)由方程(x+y)^(1/x)=y所确定,则dy/dx=?

ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����

设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)

/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'

设Y=F(x)是由函数方程ln(x+2y)=x^2+y^2所确定的隐函数,求Y

F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]

设函数y=f(x)由方程x+y=e^y确定,求dy/dx

两边对x求导:1+y'=y'e^y得dy/dx=y'=1/(e^y-1)

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[