设随机变量服从参数为λ=1 2的指数分布,则E[(x-1)(x-2)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:05:45
因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
P(X>1)=e^(-λ)=e^(-2),则λ=2
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91
pdf(概率密度)fx=exp(-x)cdf(累计概率)Fx=1-exp(-x)那么x2的概率=exp(-2),反正是连续函数,等号无所谓E[Y]=p(x2)]=2-2exp(-2)+E[X(>2)]
0.21/λ=1/5=0.2根据0—1分布,数学期望p方差p(1-p);二项分布(贝努里概型),数学期望np方差np(1-p);泊松分布,数学期望λ方差λ;均匀分布,数学期望(a+b)/2方差[(b-
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)