设随机变量服从[a,b]上的均匀分布,令=c b,试求随机变量的密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:12:13
设随机变量服从[a,b]上的均匀分布,令=c b,试求随机变量的密度函数
设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c不等于零),试求随机变量Y的密度函数

不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊

设随机变量X与Y独立,并且都服从区间[0,a]上的均匀分布,求随机变量Z=X/Y的概率密度.

这种涉及均匀分布的问题画图来解决是比较方便的首先,(x,y)服从二维均匀分布,密度函数是面积的倒数,即1/a^2P{Z

概率论!设随机变量X服从[1,4]上的均匀分布,则P{X>2}=?谢谢!

既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。

设随机变量X服从二项分布B(3,0.4),求随机变量Y=X(X-2)的概率分布

X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C

设随机变量x服从区间[a b]上的均匀分布 写出其概率密度函数f(x),并求其数学期望Ex,方差Dx.

F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx!

X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx

密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b

随机过程题目:设X是一连续随机变量,具有分布F,证明:(a)F(x)服从(0,1)上的均匀分布;(b)如果U是(0,1)

这里的F(X)是一个随机变量,是随机变量X的一个函数(是大X不是小x),令Y=F(X)的分布就是求P(Y再问:第二问能具体一些吗?再答:如果U是(0,1)上的均匀分布的变量则P(U

随机变量X的数学期望E(X)是平均值吗?它是怎样的平均值?设X服从[a,b]上的均匀分 布,则X的数学期望E(X)是多少

离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望.这是概念.随机变量X是指离散型的,设X的可能值有N个,则E(X)=求和(Xn/N)=求和(Xn)/N

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

设随机变量X在(-π/2,π/2)上服从均匀分布,试求随机变量Y=sinX的密度函数

先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.