设随机变量在(0,5)上均匀分布,y服从λ=5.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:18:13
(1)f(x)=1/(b-a)=1/4P{-0.5
做出这个效果很辛苦,
均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/
XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-
因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
f(y|x)=1/(a-x)f(x)=1/asof(x,y)=f(y|x)f(x)=1/a(a-x)f(y)=[f(x,y)对x的积分,积分限是0到y]=lna/a-ln(a-y)/a
Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望.这是概念.随机变量X是指离散型的,设X的可能值有N个,则E(X)=求和(Xn/N)=求和(Xn)/N
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
先求fx=1fy=1/2然后根据z<-2-2≤z<00≤z<2z≥2分别进行进行积分求F(z)再根据F(z)求密度函数fz.
δ=x^2-4>=0解得x>2或
先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.
P{2X+4≤10}=P{X≤3}=F(3)=(3-0)/(5-0)=3/5
0.52x+(118-x)*0.33=53