设随机变量x的密度函数为ke^-3x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:14:15
设随机变量x的密度函数为ke^-3x
设随机变量X的密度函数为

还有一个方程是根据总概率为1对f(x)从-∞到+∞上的积分值为1即3a/2+6b+2c=1

设随机变量X的概率密度函数为f(x)=2x,0

首先,根据x的概率密度算出p(X

设随机变量X的密度函数为f(x)={x/2 0

如下图,需要分段积分:答案为:9/16.

设随机变量X的概率密度函数为f(x)={x/2,0

先求Y的分布函数FY(y)FY(y)=P{Y≤y}=P{2X+3≤y}=P{X≤(y-3)/2}=FX[(y-3)/2]所以Y=2X+3的概率密度为:fY(y)=fX[(y-3)/2]·[(y-3)/

设随机变量X的密度函数为f(x)=2x (0

按定义算EX=2/3DX=1/18(非常基础的积分不公式繁就不打了)|X-2/3|>=√2/3X>=(√2+2)/3或X=(√2+2)/3或X=(√2+2)/3)+P(X

设随机变量X的密度函数为F(X)=3X²,0

P(X≤1/2)=F(1/2)=∫3x²dxx∈(0,1/2)=x³|x∈(0,1/2)=1/8即X每次独立观察时≤1/2的概率为1/8则Y服从二项分布参数n=10k=2p=1/8

设二维随机变量(X,Y)联合概率密度为f(x,y)=ke的-(3x+4y)次方

利用概率密度积分为1等性质计算.经济数学团队帮你解答,请及时采纳.

设随机变量X的概率密度为

新年好!可用概率密度积分为1如图得出c=-1/2.经济数学团队帮你解答,请及时采纳.谢谢!

统计学 随机变量1、设随机变量ξ的密度函数为P(x){2x,0

好难打这些怪符号呀,你留个邮件,我写完了然后拍成图片发到你邮箱图片已发送请查收

设随机变量x的密度函数为f(x)=Ae(e的指数是:-|x|.)

(1).∫[-∞,+∞]f(x)dx=∫[-∞,0]Ae^xdx+∫[0,+∞]Ae^(-x)dx=A+A=1,A=1/2.(2).x=0时,F(x)=∫[-∞,0](1/2)e^tdt+∫[0,x]

设随机变量X的密度函数为Φ(x),则Y=-X的密度函数为

不用雅可比也行,不过那个是标准过程,这里给个捷径.X的密度函数为Φ(x)那么X的分布函数我们设成F(x)当然F(x)求导=Φ(x)F(x)=P(X

二维随机变量XY的联合密度函数为F(x,y)=Ke^-(2x+y) X>0,y>0 O,求系数K

x(0,正无穷)y(0,正无穷)F(x,y)=x(0,正无穷)(-Ke^(-2x+y)(y=+无穷)+Ke^(-2x+y)(y=0))=x(0,正无穷)(0+ke^-2x)=-K/2e^-2x(x=+

设随机变量X的概率密度函数为f(x)=3x^2,0

EX=∫(0,1)x*3x^2dx=3/4EX^2=∫(0,1)x^2*3x^2dx=3/5所以DX=EX^2-(EX)^2=3/5-(3/4)^2=3/80

服从拉普拉斯分布的随机变量X的概率密度为f(x)=ke^-|x|,求常数k及分布函数F(x)

f(x)=ke^-|x|相当于正负半轴上的两个对称的指数分布,所以k=1/2xx)(1/2)e^xdx=e^x/2x>0,F(x)=∫(-∞-->x)(1/2)e^xdx=∫(-∞-->0)(1/2)

设随机变量X的密度函数为:

1再问:为什么啊再答:P(Y>=k)=∫{k到正无穷}f(x)dx=2/3根据f(x)的分段特点,可得1

设随机变量X的概率密度函数为f(x)=2x,(0

fY|X(y|x)=1/2xf(x,y)=fY|X(y|x)fx(x)=1,其中0再问:跟我做的一样,但是我的疑问是在X=x的条件下这个条件下这句话··不太理解什么意思·再答:这个得靠您慢慢理解了。

设随机变量X的概率密度函数为

期望不存在如果期望存在,期望是1/x乘上密度函数f(x)在0到无穷上积分,而这个积分是不收敛的因为在0附近f(x)~1,被积函数~1/x,广义积分发散所以Y=1/x的期望不存在