设随机变量X的分布函数为F(x)=A Barctanx 的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:06:09
设随机变量X的分布函数为F(x)=A Barctanx 的概率密度
设连续型随机变量x的分布函数为f(x)={0,x

X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/

设连续型随机变量X的分布函数为F(X)

(1)、当x趋于1时,显然Cx^2的极限应该为1,这样才满足连续型随机变量的分布故C*1=1,即C=1(2)、P(0.3

设离散型随机变量X的分布函数为F(X)={0,x

很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持

设F1(x),F2(x)分别为随机变量X,Y的分布函数,若F(x)=0.4F1(x)+kF2(x)也是某随机变量的分布函

若存在F(x)=0.4F1(x)+kF2(x),则在区间内存在一点,F(x)=F1(x)=F2(x),得F1(x)=F2(x)——①;F1(x)=0.4F1(x)+kF2(x)——②;解得:0.6F1

设随机变量x的概率密度为见图、 F(x)是X的分布函数,求随机变量Y=F(X)的分布函数

分位数变换,均匀分布再问:给定的f(x)怎么用?再答:取c属于(0,1)考虑P(Y

设连续型随机变量X的分布函数为F(X) ,0,x

Ax^题目有问题啊这个的一般的做法是求(0,1)上Ax^的定积分这个定积分等于1然后就可以求出A的值把题目重新发一下吧

设随机变量X的分布函数为 0 x

由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1

设随机变量X的分布函数F(x)在x

E(X)=2随机变量X的分布函数F(x)在x

设随机变量x的分布函数为F(x)=0,x

求极限:limAsinx=1(x→π/2),得A=1P(|x|

概率 分布函数设随机变量x的分布函数F(x)= 0 ,x

因为实际上在连续型随机变量的中单个点的概率是没有意义的,这一点无论是从连续型随机变量概率的定义还是从计算方法来看都是可以说明问题的(从负无穷到正无穷的概率一共为1,那么单个点的概率就是用1除以一个无穷

设随机变量X的分布函数为F(x),密度函数为f(x)若X与-X有相同的分布函数,

正确的是:C1,f(x)不能F(∞)=1≠0=F(-∞)3,只剩下C

设随机变量X的分布函数为F(x),当x

分布律为P(X=-1)=0.4P(X=1)=0.4P(X=2)=0.2如有意见,欢迎讨论,共同学习;如有帮助,再问:答案是这个,但是怎么算出来的呢???再答:利用公式P(X=x)=F(X)-F(X-0

设随机变量X的分布密度函数f(x)=

由于X是随机变量,那么f(x)在[0,1]的定积分是1,即积分kx^3dx|[0,1]=1,即kx^4/4|0,1=1,得到k1^4/4=1,k=4

设随机变量X的分布函数为F(x)=中括号0 x

1.常数k吧F(1+)=1,连续所以F(1-)=F(1+)=K得K=12.f(x)=F'(x)是个分段函数f(x)=0,x<0f(x)=1,0≤x<1f(x)=0,1≤x(3)p(|x|<0.5)=p

设连续型随机变量x的分布函数为F(x)=0.x

F(1)=A=1A=1fx(x)=1,x属于(0,1)E(x)=1/2.如有意见,欢迎讨论,共同学习;如有帮助,

设连续型随机变量X的分布函数为F(X)=0,X

A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.