设随机变量X满足参数为3的指数分布,求随机变量Y=min(x,2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:58:13
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
解 注意:若X是一个连续型随机变量,F(x)是其分布函数,则随机变量Y=F(X)一定服从(0,1)上的均匀分布. 最好能记住这个结果,在做题时非常方便.对于本题来说,若你知道Y=1
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
答案是C这道题就考察了概率密度函数的定义,通过定义就可以解决这道题再问:����AΪʲô����再答:���ʷֲ�����F��x�����㵽һ֮��再问:���ܸ��Ҿٸ�f(x)����0~1�ģ
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
参数为1,就是λ为1
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
其实楼上的那位过程是对的,只是给的结果是方差.Y服从二项分布Y~b(n,p),这里n=3,p=e^(-2).所以E(Y)=3*e^(-2)再问:p=e^(-2)这个怎么得出来的。。。。。再答:泊松分布
这个题目没错F(3,4)=P{X≤3,Y≤4}=P{X≤3,X^2≤4}=P{-2≤X≤2}直接求结果,不要先求分布函数,那样很麻烦的
(1).∫[-∞,+∞]f(x)dx=∫[-∞,0]Ae^xdx+∫[0,+∞]Ae^(-x)dx=A+A=1,A=1/2.(2).x=0时,F(x)=∫[-∞,0](1/2)e^tdt+∫[0,x]
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
P(X=2)=[9e^(-3)]/2
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)